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CHAPTER 1

Introduction

1.1 Machine scheduling

Scheduling treats the choices that need to be made when given multiple tasks, such
as “How do I perform the tasks?” and “In what order do I perform them?” While
sometimes these decisions seem (or are) easy, at other times they are much more in-
volved. Machine scheduling problems are a way of modeling these types of decisions.

In machine scheduling we are given a number of jobs (the tasks) and a number
of machines. A schedule is an assignment of the jobs to the machines and an order
in which the machines process those jobs. Both the jobs and the machines can have
various properties. For example an order in which the job has to visit the machines,
machine speeds, job processing requirements, a deadline before which a job has to be
finished or the resources needed to process the job. These properties may constrain
the set of schedules that are feasible. An objective function tells us what, given the
constraints of the model, our goal is. This might be to minimize the time at which
the last job finishes processing, to maximize the number of jobs that are processed
before their deadline or to simply find a feasible schedule.

We identify the jobs by their index and the set of jobs is denoted by N ≡
{1, . . . , n}. If there are multiple machines we also identify them by their index and
the set of all machines is denoted by M ≡ {1, . . . ,m}. In most cases the index j
refers to a job, while the index i refers to a machine. For each pair of a machine and
a job, (i, j), we denote by pij the processing time of Job j on Machine i. This is the
time that Job j has to be processed if it is scheduled on Machine i. Many different
scheduling models exist, most of which can be succinctly referred to with the three-
field notation introduced by Graham et al. [27]. The three-field notation is α |β | γ,
where α denotes the properties of the machine(s), β denotes the properties of the
job and γ denotes the objection function. In this thesis we only consider so-called
single stage machine scheduling problems, where jobs only need to be processed
once on one of the machines. The simplest versions of machine scheduling problems
are those where only a single machine is involved. We call these single machine
scheduling problems. In three-field notation these are referred to by a 1 in the α-field
(1 | | ). If more than one machine is involved we call the problem a multiple machine
scheduling problem.

Definition 1.1 (Identical, related and unrelated machines). We speak of related
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machines (Q | | ) if each machine has a speed, si, and each job has a processing
requirement, pj , such that pij = pj/si. Identical machines (P | | ) refers to the
model where for all jobs the processing time is independent from the machine on
which it is processed, i.e. all machines have speed si = 1. In the case of unrelated
machines (R | | ) there is no restriction on the values of pij for any machine-job pair.

A Job j may also have a weight, wj , which can indicate, for example, the impor-
tance of the job or the costs of letting that job wait one unit of time.

The focus of this thesis is on utilitarian objectives, by which we mean objectives
that can be expressed as the sum of job utilities. The most common utilitarian
objectives for scheduling are the sum of completion times and its weighted counter-
part. Some other common objectives include: makespan, which is the finishing time
of the whole schedule or, equivalently, the highest completion time among all jobs,
and maximum or sum of lateness/tardiness/earliness. When jobs have due dates,
the latter measure the deviation from those due dates.

1.1.1 Gantt charts

There are numerous ways to represent a schedule of jobs on a machine. For single
machine scheduling we often use a vector of completion times, which gives for each
job its completion time in the schedule. For a single machine and non-preemptive,
deterministic schedules this uniquely determines the schedule. For multiple machines
we additionally have to specify which machine processes which job.

A Gantt chart gives a clear visual representation of a schedule that can also be
used for multiple machines. In a Gantt chart we visualize for each moment in time
which job is being processed on which machine.

The following example shows for a simple scheduling problem a representation of
a corresponding schedule as a Gantt chart.

Example 1.1. Consider the scheduling of three jobs on two machines. Each job can
be processed on either machine. The processing time of Job 1 is 1 on either machine.
The processing time of Job 2 is 1 on Machine 1 and 2 on Machine 2. The processing
time of Job 3 is 3 on Machine 1 and 2 on Machine 2. Figure 1.1 is a Gantt chart of
the schedule where Job 1 and Job 3 are scheduled, in that order, on Machine 1 and
Job 2 is scheduled on Machine 2.

1.1.2 The scheduling polytope

While explicitly stating the order in which the jobs are processed might be a very
clear and intuitive way to represent a schedule, there are also some disadvantages.
This is especially the case when we are only interested in certain aspects of the
schedule, such as when a certain job finishes processing or what the average waiting
time of the jobs is. Since objectives often deal with this type of questions it can be
convenient to look at a vector of completion times of the jobs to represent a schedule
instead of an explicit ordering. Let o : N → N be an ordering of the jobs, such
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Job 1 Job 3

Job 22

1

0 1 2 3 4 5 6 7

time

Figure 1.1: A Gantt chart of the schedule of Example 1.1.

that o(j) = k means that Job j is the k-th job in the order. The completion times,
C ∈ Rn, can be computed as follows:

Cj =
∑
k∈N,

o(k)≤o(j)

pk ∀j ∈ N .

If instead we would be given a completion time vector C, the corresponding schedule
is the one that processes the jobs in order of increasing completion times. These
relations between the vector of completion times and orderings of the jobs show that
indeed the completion time vectors are a useful way to represent schedules.

In this thesis, by the start time of a job we mean the moment it first starts its
processing and by the half time of a job we mean the moment it has completed
half of its processing requirement. We have the following relation between the start
time Sj , the half time Hj and the completion time Cj of job j for non-preemptive
schedules

Cj = Hj +
1

2
pj = Sj + pj .

In this thesis, for a given processing time vector p, we refer to the convex hull of
all feasible start time vectors as the single machine scheduling polytope. The first
full description of the single machine scheduling polytope was given in Queyranne
[58]. For convenience of notation let

g(K) :=
1

2

∑
j∈K

pj

2

, (1.1)

for any set K ⊆ N of jobs.

Theorem 1.1 (Queyranne [58]). The system of inequalities,∑
j∈K

Sjpj ≥ g(K)− 1

2

∑
j∈K

p2
j for all K ⊂ N (1.2)

∑
j∈N

Sjpj = g(N)− 1

2

∑
j∈N

p2
j , (1.3)
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fully describes the scheduling polytope for start times1.

Note that the scheduling polytope can easily be shifted to describe the convex
hull of all feasible completion time vectors or half time vectors.

The single machine scheduling polytope, is well understood [58]. In particular,
it is known to be a polymatroid, and the separation problem, that decides if a given
point is contained in the polytope or not, can be solved in O(n log n) time. Also,
its face lattice can be described by an ordered partition of N , as follows. Every
(n − k)-dimensional face f of the scheduling polytope corresponds one-to-one with
an ordered partition of N into k disjoint sets, D1, . . . , Dk. With an ordered partition,
we mean the (ordered) tuple (D1, . . . , Dk), with Di ∩Dj = ∅ for all i, j ∈ {1, . . . , k},
i 6= j, and

⋃k
i=1Di = N . The intended meaning is that inequalities (1.2) are tight for

all Ki := D1∪. . .∪Di, i ∈ {1, . . . , k}. This corresponds to convex combinations of all
schedules where jobs in Ki are scheduled before jobs in N \Ki, for all i ∈ {1, . . . , k}.
Furthermore, the schedules correspond to the ordered partitions ({σ(1)}, . . . , {σ(n)})
for all permutations σ. Each such ordered partition corresponds to a vertex of the
scheduling polytope as follows: let ({σ(1)}, . . . , {σ(n)}) be an ordered partition and
v the vertex it corresponds to, then

vσ(j) =

j∑
i=1

pσ(i) for all j ∈ N . (1.4)

1.1.3 Linear orderings and permutations

Single machine scheduling is tightly connected to ordering. In absence of any idle
time, any ordering of the jobs uniquely determines a schedule.

Definition 1.2 (Linear ordering polytope). A linear ordering of n elements describes
for any pair of elements, (i, j), either that i is ordered before j or j is ordered before i.
Furthermore, if i is ordered before j and j is ordered before k, then also i is ordered
before k. We represent such an ordering as a vector δ ∈ [0, 1]n

2

, that satisfies the
following system of inequalities:

δkj + δjk = 1 ∀j, k ∈ N, j 6= k (1.5)

δ`k + 1 ≥ δ`j + δjk ∀j, k, ` ∈ N (1.6)

δjk ∈ {0, 1} ∀j, k ∈ N , (1.7)

where δkj = 1 denotes that k is ordered before j and δkj = 0 otherwise.
The linear ordering polytope is the convex hull of all such vectors.

To any linear ordering we can relate the schedule that schedules all jobs in that
order. Any vertex of the scheduling polytope then corresponds to exactly one such

1If pj > 0 for all j ∈ N , none of these inequalities is redundant, and the dimension is n− 1 [58].
Note that, for the degenerate case, where pk = 0 for some jobs k, we would have to add constraints
0 ≤ Ck ≤

∑
j∈N pj in order to describe the convex hull of schedules.
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ordering. For such a vertex we get the start time Sj of any job, j, as follows:

Sj =
∑

k∈N\{j}

δkjpk ∀j ∈ N . (1.8)

Definition 1.3 (Permutahedron). The permutahedron is the polytope that consists
of all convex combinations of vectors of permutations of {1, . . . , n}. The permutahe-
dron is a special case of the scheduling polytope for completion times where pj = 1
for all j ∈ N .

We can interpret a permutation vector as an ordering of the jobs. If we do this,
it is easy to compute from a vertex of the permutahedron the corresponding start
time vector.

1.1.4 Smith’s rule

For the single machine scheduling problem with sum of weighted completion times
objective (1 | |

∑
wjCj), Smith [66] describes what is known as Smith’s rule or the

weighted shortest processing time first (WSPT) rule. It is processing the jobs in
descending order of the ratio of weight over processing time.

Theorem 1.2 (Smith’s rule [66]). On a single machine, a schedule is optimal for
the sum of weighted completion time objective if and only if it schedules the jobs in
WSPT order.

In particular, for the non-weighted case (wj = 1 for all j) this means that a
schedule is optimal if and only if it schedules the jobs in shortest processing time
first (SPT ) order.

1.2 Algorithmic game theory

Algorithmic game theory treats decision making in settings where one or more play-
ers, who each make their own strategic decisions, are involved. In this thesis the
games we treat are so-called scheduling games, where the players correspond to jobs
in a machine scheduling setting. We identify these n players by there index and the
set of all players is denoted by N ≡ {1, . . . , n}. We consider non-cooperative games,
where we assume that every Player j has its own utility function, uj(·), which it tries
to maximize, and a set of possible actions, Σj , which we call strategies. The utilities
of the players are functions of the strategy vector, which consists of one strategy for
each player.

Definition 1.4 (Non-cooperative game). A game is a triple G = (n, u,Σ), where
Σ = Σ1 × . . .× Σn and u is the vector of utility functions of the players.

If σ ∈ Σ is a strategy vector then σj denotes the strategy of Player j, σ−j denotes
the strategies of all players except Player j and (σj , σ−j) denotes the whole strategy
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vector. If a player chooses a single strategy we refer to it as a pure strategy. In general
we allow players to choose a probability distribution over such pure strategies. We
call such a probability distribution a mixed strategy. A vector σ of possibly mixed
strategies is called a mixed strategy vector.

Each combination of strategies chosen by the players leads to an outcome of
the game. This outcome is represented by the utilities of the players. Given a
game we are looking to predict what strategies the players will choose and compare
the corresponding outcome to a desirable optimal outcome. For scheduling games
the strategies of the players determine a schedule and the players utilities can be
computed as a function of their completion time in the schedule. We illustrate some
of the concepts of algorithmic game theory with scheduling games as examples.

1.2.1 Equilibria

Since players make their own decisions in non-cooperative games, not every strategy
vector is viable. There are several notions that describe what a viable strategy vector
may look like. We call these outcomes equilibria.

The concept of Nash equilibria (NE ) was introduced by Nash [52] as a solution
concept for non-cooperative games. It is based on the assumption that players will
always try to improve their utility. Therefore, a strategy vector is considered to be
‘stable’ if no player can unilaterally improve.

Definition 1.5 (Nash equilibrium). A (mixed) strategy vector, ν, is a Nash equi-
librium if for any Player j ∈ N and any strategy ν′j of Player j

Eσ∼(νj ,ν−j)[uj(σ)] ≥ Eσ∼(ν′j ,ν−j)
[uj(σ)] , (1.9)

where Eσ∼ν denotes the expectation over the stochastic variable strategy vector σ,
such that σj is distributed according to νj for all j.

Any strategy, σj , that maximizes a Player j’s expected utility, for a given strategy
vector, ν−j , is called a best response of j with respect to ν−j . In the simple case
where ν is a pure strategy vector we have, instead, for Player j ∈ N and any ν′j ∈ Σj ,

uj(νj , ν−j) ≥ uj(ν′j , ν−j) .

We refer to this case as pure Nash equilibrium (PNE ) and similarly to the mixed
strategy case as mixed Nash equilibrium (MNE ).

Example 1.2 (Nash equilibrium). Consider scheduling three jobs on two identical
machines. Jobs 1 and 2 both have a processing time of 1 and Job 3 has a processing
time of 2. Each machine schedules the jobs assigned to it in SPT order and breaks
ties in favor of Job 1. The jobs try to minimize their completion time. For this
instance, both assignments in Figure 1.2 are pure Nash equilibria, since for no job
changing the machine it is processed on, improves its completion time.
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Job 1 Job 3

Job 22

1

0 1 2 3

Job 1

Job 3

Job 2

2

1

0 1 2 3

Figure 1.2: Two Nash equilibria for the same scheduling game.

One disadvantage of pure Nash equilibria is that not every game induces such
an equilibrium. Example 1.3 shows a matching pennies game where no pure Nash
equilibrium exists.

Example 1.3. Two people, Player A and Player B, play a game of matching pennies.
The strategies of both players consist of choosing heads or tails. If both choices
match, Player A wins, otherwise Player B wins. If a player wins he receives a utility
of 1, otherwise his utility is −1. Now, it is easy to see that if Player A plays tails,
Player B has an incentive to play heads. Likewise, if Player A plays heads, Player B
has an incentive to play tails. Similar reasoning holds when Player B plays heads.We
see that no combination of pure strategies leads to a Nash equilibrium.

Nash [52] shows that allowing the players to play mixed strategies solves this
disadvantage.

Theorem 1.3 (Nash [52]). For every finite non-cooperative game there is a mixed
strategy vector ν that satisfies (1.9).

The game in Example 1.3 has one mixed Nash equilibrium, where both play-
ers play head and tails both with probability 1/2. In that case both players have
probability 1/2 to win and can not improve by changing their strategy.

Correlated equilibria and coarse correlated equilibria generalize upon (mixed)
Nash equilibria. In this thesis we do not explicitly treat these equilibria. However,
for sake of completeness and since the smoothness framework as described below
does imply bounds that involve these equilibria as well, we give definitions below.

Definition 1.6 (Correlated equilibrium). A probability distribution ν on Σ is a
correlated equilibrium if for each Player j and for all σ∗j ∈ Σj , such that Pσ∼ν [σj =
σ∗j ] > 0 and all σ′j ∈ Σj we have

Eσ∼ν [uj(σj , σ−j)|σj = σ∗j ] ≥ Eσ∼ν [uj(σ
′
j , σ−j)|σj = σ∗j ] .

Here Eσ∼ν denotes the expectation over the stochastic variable strategy vector σ
that is distributed according to ν.

Note that, in general, a distribution on Σ can not be represented by a mixed
strategy vector.
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Definition 1.7 (Coarse correlated equilibrium). A probability distribution ν on Σ
is a coarse correlated equilibrium if for each Player j and for all σ′j ∈ Σj we have

Eσ∼ν [uj(σj , σ−j)] ≥ Eσ−j∼ν−j [uj(σ′j , σ−j)] .

Here Eσ∼ν denotes the expectation over the stochastic variable strategy vector σ
that is distributed according to ν.

For a game G let PNE(G) denote the set of pure Nash equilibria, NE(G) the set
of (mixed) Nash equilibria, CE(G) the set of correlated equilibria and let CCE(G)
denote the set of coarse correlated equilibria. Then the following inclusions hold

PNE(G) ⊆ NE(G) ⊆ CE(G) ⊆ CCE(G) .

1.2.2 Price of anarchy

The price of anarchy (POA) [45, 55] is a measure that compares the worst case
Nash equilibrium of a game to the optimal solution in the corresponding optimiza-
tion problem. One could say that the price of anarchy measures the deterioration
of system performance due to selfishness of the players and the lack of central co-
ordination. Here, the metric for the quality of a solution is in terms of the central
objective function. In the economic literature the central objective function is rather
called social choice function [51]. In this thesis we consider cost minimization games,
where the central objective function is to minimize some cost function. We therefore
define the price of anarchy for those games, as follows. Equivalent definitions exist
for maximization games [45, 55].

Definition 1.8 (Price of anarchy for a game). The price of anarchy for a game, G,
is defined as

POA(G) =
maxν∈NE(G) Cost(ν)

Cost(OPT(G))
,

where OPT(G) is an optimal solution of game G and Cost(σ) denotes the central
objective function value in outcome σ.

We also use the price of anarchy in a more general sense to compare Nash equi-
libria to optimal solutions for a set of games.

Definition 1.9 (Price of anarchy for a set of games). For a class of games Γ the
price of anarchy is defined as

POA(Γ) = sup
G∈Γ

POA(G) .

The price of anarchy can similarly be defined for other equilibria. Most notably
the pure price of anarchy (PPOA) is used to refer to the case where only pure Nash
equilibria are considered. The framework discussed in the next section provides
bounds on the price of anarchy for all of the in Section 1.2.1 discussed equilibria.
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1.2.3 Smoothness

In Roughgarden [63] the robust price of anarchy is introduced as an upper bound on
the price of anarchy for pure and mixed Nash equilibria, correlated equilibria and
coarse correlated equilibria.

Definition 1.10 ((λ, µ)-smooth games [63]). A utilitarian cost-minimization game
is (λ, µ)-smooth if for every two strategy vectors ν and σ,

n∑
j=1

Costj(σj , ν−j) ≤ λ · Cost(σ) + µ · Cost(ν) , (1.10)

where Cost(σ) denotes the utilitarian objective value for strategy vector σ, i.e. the
sum of the utilities of the agents.

If a utilitarian game is (λ, µ)-smooth with λ > 0 and µ < 1, it follows that for
any (mixed) Nash equilibrium ν and optimal solution σ

n∑
j=1

Costj(ν) ≤
n∑
j=1

Cj(σj , ν−j) ≤ λ · Cost(σ) + µ · Cost(ν) . (1.11)

From (1.11) it follows directly that λ
1−µ is an upper bound on the price of anar-

chy for any (λ, µ)-smooth game. This bound also holds for correlated equilibria and
coarse correlated equilibria [63]. The robust price of anarchy is defined in Roughgar-
den [63] as the least upper bound on the price of anarchy that is provable through
a smoothness argument.

Definition 1.11 (Robust price of anarchy [63]). The robust price of anarchy of a
cost-minimization game is

inf

{
λ

1− µ

∣∣∣∣ the game is (λ, µ)-smooth

}
.

In Chapter 2 we also use the notions of semi-smoothness and niceness of games.

Definition 1.12 ((λ, µ)-semi-smooth games [2]). A cost-minimization game is (λ, µ)-
semi-smooth if for every Player j there is a mixed strategy σj such that for each
strategy vector ν,

n∑
j=1

Eηj∼σj [Costj(ηj , ν−j)] ≤ λ · Cost(σ∗) + µ · Cost(ν) , (1.12)

where σ∗ is an optimal solution.

Semi-smoothness is a generalization of regular smoothness that still provides
bounds for (mixed) Nash equilibria, correlated equilibria and coarse correlated equi-
libria in the same fashion as regular smoothness [2].
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Definition 1.13 ((λ, µ)-nice games [2]). A cost-minimization game is (λ, µ)-nice if
for every mixed strategy vector ν there is a mixed strategy vector σ such that

n∑
j=1

Costj(σj , ν−j) ≤ λ · Cost(σ∗) + µ · Cost(ν) , (1.13)

where σ∗ is an optimal solution.

Niceness does not imply the same bounds as semi-smoothness. However it is easy
to see that it still provides upper bounds on the price of anarchy.

1.2.4 Mechanism design

All of the previous examples and definitions for optimization problems and algorith-
mic game theoretical problems assume that we are given full information on which
we need to base our decision. More specifically, we assume that this information is
perfect and complete, even if we are dealing with selfish players. In mechanism de-
sign problems we partly drop this assumption, by assuming that players have private
information that is relevant for the outcome of the game. Mechanism design can be
seen as designing a game such that the result is beneficial for the designer.

We start with a combinatorial optimization problem which has a certain set of
outcomes, A, which we call allocations. We introduce players with some private
information, about which they are allowed to lie. In this setting every player j ∈ N
has private information called its type, tj . This type consists of one or multiple pa-
rameters and we assume that for each player there is a type set, Tj , and a probability
distribution over that type set, ϕj : Tj → [0, 1], that are publicly known. Moreover,
each player has a valuation function vj : A × Tj → R. The mechanism designer
decides on a set of strategies for each player, that determine the allocation to all the
players, and a vector of payments, π. The utility for Player j is then uj = vj + πj .
The mechanism designer tries to maximize his own utility function, which in our
case is minimizing the sum of payments made to the players.

In the resulting game the players do not simply choose one strategy, but they
choose one strategy for every one of their possible types. If, in expectation with
respect to the type distribution and the chosen strategies of the other players, no
player can improve his utility by unilaterally changing his strategy, we call the played
strategies a Bayes-Nash equilibrium. If this is true for any realization of the strategies
and types of the other players, we call the player strategies a dominant strategy
equilibrium.

Example 1.4 (Scheduling mechanism design). Consider the scheduling of two jobs
on one machine. Each of the jobs has a processing time, p1, p2, and a weight, w1, w2.
The cost for waiting for a job j is wjSj , where Sj is the jobs start time. The owner
of the machine needs to compensate the jobs for their waiting costs.

The processing times of the jobs are known and both the same: p1 = p2 = 1.
However, the weights are uncertain: Job 1 has weight w1 = 4 and Job 2 either has
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weight w2 = 1 or it has weight w2 = 3, each with probability 0.5. If the types are
not private it is easy to see that it is optimal to always schedule Job 1 first. This
results in an expected sum of weighted start times equal to 2.

Now consider that the type of each job is private information. Suppose that we
simply ask the jobs what their type is. We still know that Job 1 has weight w1 = 4.
However, Job 2 may represent itself as having w2 = 3, while its type is actually
w2 = 1. If it does, Job 2 is scheduled last and receives a payment of 3, while its
real waiting costs are only 1. So in this case it would be beneficial for Job 2 to lie
about its true type. Furthermore the expected payments made to the jobs in this
case would be 3. By changing the schedule when Job 2 reports type w2 = 3, such
that Job 2 is scheduled first in that case, Job 2 does not benefit from lying when it
has type w2 = 1. This results in expected payments made to the jobs equal to 2.5.

Direct revelation mechanisms

In this thesis we restrict ourselves to direct revelation mechanisms in which a player’s
strategy space for each of their types is to report one type. Myerson’s revelation
principle tells us that in many cases this is a valid simplification [49]. In particular
for the model we study in Chapter 3 the revelation principle holds.

Theorem 1.4 (Revelation principle [49]). For any mechanism that has a Bayes-
Nash equilibrium there exists an equivalent feasible direct revelation mechanism for
which a Bayes-Nash equilibrium exists and which gives to the mechanism designer
and all players the same expected utilities as in the given mechanism.

In Theorem 1.4, one can replace the Bayes-Nash equilibrium by another equilib-
rium concept, while remaining true. In particular, this is the case for the dominant
strategy equilibrium.

Since, for direct revelation mechanisms, the strategy space of all players is simply
to report a type, we define a direct revelation mechanism as a tuple (f, π), where f is
an allocation rule and π is a payment vector. For each type vector t ∈ T = T1×. . . Tn,
the allocation rule is a function, f : T → A, that decides which allocation is chosen.
The payment vector is a function that for each type vector t ∈ T and each player
j ∈ N specifies a payment, πj : T → R, made to Player j.

We consider scheduling mechanism design in which an allocation rule is assigning
schedules to type vectors and the valuation of the players is based on their (expected)
start time in those schedules. We refer to the allocation rule for such a scheduling
game as scheduling rule. For type vectors we use the same notation as for strategy
vectors, namely if t ∈ T is a type vector then tj denotes the type of Player j, t−j
denotes the types of all players except Player j and (tj , t−j) denotes the whole type
vector. Likewise, we denote with ϕ(t) and ϕ−j(t−j) the probability of respectively t
and t−j occurring and with T−j the set of all possible vectors that exclude Player j.

The scheduling rule f directly implies (expected) start times for the players. We
therefore write the (expected) start time of Player j for type vector t as Sj(f, t) and
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the expected start time of Player j when reporting type tj as ESj(f, tj).

ESj(f, tj) =
∑

t−j∈T−j

ϕ−j(t−j)Sj(f, (tj , t−j)) .

For the models that we study in this thesis the utility of Player j is

uj(tj , f, t) = −wj(tj)Sj(f, t) + πj(t) ,

where wj(tj) is the weight that Job j has in type tj . Note that the corresponding
valuation function for Player j is vj(tj) = −wj(tj)Sj(f, t).

Incentive compatibility and individual rationality

A mechanism, (f, π), is Bayes-Nash incentive compatible (BNIC ) if no player has an
incentive to lie about their type in expectation.

Definition 1.14 (Bayes-Nash incentive compatibility). A mechanism, (f, π), is
Bayes-Nash incentive compatible if for each Player j and any pair of types tj , t

′
j ∈ Tj∑

t−j∈Tj

ϕ−j(t−j)uj(tj , f, (tj , t−j)) ≥
∑

t−j∈Tj

ϕ−j(t−j)uj(tj , f, (t
′
j , t−j)) .

For the scheduling mechanism design problems we consider, a mechanism is BNIC
if for each Player j and any pair of types tj , t

′
j ∈ Tj

− wj(tj)ESj(f, tj) + Eπj(tj) ≥ −wj(tj)ESj(f, t′j) + Eπj(t
′
j) , (1.14)

where Eπj(tj) =
∑
t−j∈Tj ϕ−j(t−j)πj(tj , t−j). We immediately see that, when con-

sidering BNIC mechanisms it suffices to have payments made to each job solely
dependent on the type of that job (and not on the whole type vector). We say that
an allocation rule f is Bayes-Nash implementable if there exist payments π such that
the mechanism is BNIC.

Similarly, we can define dominant strategy incentive compatible (DSIC ) mecha-
nisms. These are mechanisms where no matter what the strategy of other players
is, no player has an incentive to lie about their type.

Definition 1.15 (Dominant strategy incentive compatibility). A mechanism is dom-
inant strategy incentive compatible if for each Player j and any pair of types tj , t

′
j ∈

Tj and all vectors t−j ∈ T−j

uj(tj , f, (tj , t−j)) ≥ uj(tj , f, (t′j , t−j)) .

For the scheduling mechanism design problems we consider, a mechanism is DSIC if
for each Player j and any pair of types tj , t

′
j ∈ Tj and all vectors t−j ∈ T−j

−wj(tj)Sj(f, (tj , t−j)) + πj(tj , t−j) ≥ −wj(tj)Sj(f, (t′j , t−j)) + πj(t
′
j , t−j) .
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An allocation rule f is dominant strategy implementable if there exist payments
π such that the mechanism is dominant strategy incentive compatible.

In addition to incentive compatible, we want that a mechanism is individually
rational (IR). This property implies that no truthful report of a type results in a
negative utility for any of the players. In the Bayes-Nash scheduling mechanism
design setting this translates to

πij − wijESij ≥ 0 ,

for all jobs j and all types tj ∈ Tj .

1.3 Algorithm analysis and complexity

In this thesis we design and discuss several algorithms. To this end it is useful to
introduce some concepts of algorithm analysis and complexity theory. This section
is in no way meant to be comprehensive on this subject. We refer the interested
reader to Garey and Johnson [25] and Papadimitriou [54]. This section is mostly
based on Chapter 8 and Chapter 15 of Papadimitriou and Steiglitz [56].

1.3.1 Time complexity and input size

An algorithm is a prescribed sequence of instructions such that a computer would
be able to execute them. This is a very loose way to describe what an algorithm
is, but it captures the essence. Turing [67] describes the Turing machine as a tool
to mathematically analyze the termination and running time of algorithms. The
running time is a measure for how long it takes an algorithm to terminate. Of
course, this is dependent on the exact computer on which we run the algorithm, and
therefore the theoretical running time is often expressed in terms of the number of
elementary operations. That is, arithmetic operations, comparisons, branching, and
so on. We assume that these elementary operations take unit time and that the
speed of a computer is linear in these time units, i.e. we can say one computer is
ten times as fast as another, meaning that it performs ten times a many elementary
operations in the same time frame.

For most algorithms the running time is dependent on both the input and its
representation. For example, it takes more time to sort a sequence of 10 integers
than it takes time to sort a sequence of only two integers, and an algorithm with a
graph as its input, may take more time when this graph is represented as adjacency
lists as opposed to a representation as an adjacency matrix.

Example 1.5 (Bubble sort). We want to order n jobs in SPT order. Let us assume
that the jobs are given in a list of n integer numbers which represent their processing
times. We apply the following algorithm.

Compare the first pair of adjacent integers. If they are in the right order move to
the next pair (the highest integer of the current pair and the next integer), otherwise
swap them and move to the next pair. Do this until the end of the list is reached
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and start over at the first pair. Repeat this process until no swaps are made on any
pair of the list.

Suppose we want to sort two integers with the above algorithm and suppose that
they are in reverse order. Then the algorithm compares the two integers once and
swaps them, then it compares them another time and terminates. So it takes two
comparisons and one swap to sort the list of two elements that are in reverse order.
Now if we start with a list with ten elements in reverse order, it clearly takes more
time to sort them using this algorithm. It takes even more time to sort a hundred
elements.

In the example of sorting a list of n integers with the bubble sort algorithm it
takes n comparisons and at most n swaps to go through the list once and every time
the algorithm passes through the list, one more element ends up in the correct place
in the list. Therefore the algorithm has to go through the list at most n times. So
it takes no more than n2 comparisons and no more than n2 swaps and in total no
more than 2n2 elementary operations. Instead of mentioning for each algorithm the
exact number of number of elementary operations that is needed, we use the rate of
growth of the running time of an algorithm. Big O notation is a useful instrument
to express the worst case running time of an algorithm.

Definition 1.16 (Big O notation). Let f(n) and g(n) be two functions from the
positive integer numbers to the positive real numbers. Then f(n) = O(g(n)) if for
some c ∈ R and for all n, large enough, f(n) ≤ cg(n).

Using big O notation we can now say that, worst case, bubble sort takes time
O(n2) to sort a list of n integers. We say that the time complexity of bubble sort is
O(n2).

To analyze the time complexity of an algorithm we compare it to the size of the
input. That is, the number of symbols needed to encode the input in a computer.
For common arithmetic systems, decimal or binary for example, an integer k can be
encoded in O(log k) symbols. Note that the used base of the logarithm is irrelevant
since logb(k) = log(k)/ log(b) and log(b) is a constant for any fixed base b. Since
computers regularly use a fixed number of bits to represent any integer, independent
of its size, we treat the encoding length for an integer as a constant2. We can
therefore say that a list of n integers can be encoded in size O(n).

Definition 1.17 (Polynomial time algorithm). Let A be an algorithm with input
size O(n). We say A is a polynomial time algorithm if its time complexity is O(nk)
for some k independent of the input.

In terms of the maximal size instances a computer can solve using a certain
algorithm polynomial time algorithms are in general considered efficient. Of course
there is a difference in efficiency between an algorithm that takes O(n) (linear) time

2Note that there are cases where the representation of a number on a computer is influential
on size of the input. In particular, this is the case when really large numbers are involved (large
enough that their encoding size might exceed the encoding size of the rest of the input).
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and one that takes O(n10) time. However, the difference between a polynomial
time algorithm and algorithms of which the time complexity can not be bounded
by a polynomial is much more significant. Such algorithms may for example take
exponential running time, e.g. O(2n). Example 1.6 illustrates the difference between
polynomial time algorithms and exponential time algorithms for hardware speedups.

Example 1.6. Suppose two algorithms, A and B, have the same input, which has
size n. Algorithm A is a polynomial time algorithm with time complexity O(n2).
Algorithm B is an exponential time algorithm with time complexity O(2n). Now
suppose we have an instance large enough that both algorithms show their asymp-
totic behavior in running time. Let us say that the instance takes both algorithms
one hour to complete on our current computer. However, we want to solve larger
inputs within one hour. So, we buy a new computer that is 100 times as fast as the
old one. Now from Algorithm A we can expect that it solves inputs about ten times
as large in one hour on this new computer. Algorithm B however only allows an
additive increase of the input size of about log2 100 ≈ 6.64.

1.3.2 Complexity classes P and NP
With the tools from the previous section we can describe the complexity of an algo-
rithm. However, this does not tell us anything about how well the algorithm does
for the purpose it was designed for. For example, while bubble sort has a time
complexity of O(n2), there also exist sorting algorithms that have time complexity
O(n log n). Meanwhile there are also many problems for which no polynomial time
algorithms are known. Therefore we need to be able to asses the complexity of a
problem, how hard a problem is to solve. To discuss this in a meaningful way we use
polynomial time reductions and complexity classes. The idea is that each complexity
class specifies a bound on the complexity of the problems in that class.

First let us define what we mean by a problem.

Definition 1.18 (Minimization, maximization and decision problem). A minimiza-
tion problem is a triple (I, F, c), where I is a set of instances; given an instance
I ∈ I, F (I) is the set of feasible solutions; and given an instance I ∈ I and a feasible
solution x ∈ F (I), c(I, x) is a cost function.

For a given instance I ∈ I the problem is to find a feasible solution x ∈ F (I)
such that

c(I, x) ≤ c(I, x′) , for all x′ ∈ F (I) .

A maximization problem is a triple (I, F, c), defined the same as a minimization
problem except that given an instance I ∈ I the problem is to find a feasible solution
x ∈ F (I) such that

c(I, x) ≥ c(I, x′) , for all x′ ∈ F (I) .

Given a minimization problem (I, F, c) the corresponding decision problem is a
triple (I ′, F, c), where I ′ = I ×R and given (I, C) ∈ I ′, the question is: “Does there
exist a feasible solution x ∈ F (I) such that c(I, x) ≤ C ?”
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Decision versions for maximization problems are defined similarly.

Decision problems are defined by the fact that the answer is either “yes” or “no.”
Some problems are already decision problem to begin with, such as the Hamiltonian
cycle problem or the Satisfiability problem. We call an instance of a decision problem
to which the answer is “yes” a yes-instance. Likewise, we call an instance of a decision
problem to which the answer is “no” a no-instance.

We say a problem is polynomial time solvable if there is a polynomial time algo-
rithm that solves that problem correctly. Here, solving correctly means, for a decision
problem, returning “yes” for a yes-instance and “no” for a no-instance, while for an
optimization problem it means returning a feasible solution that optimizes the ob-
jective function. The complexity class P consists of all problems that are polynomial
time solvable.

Definition 1.19 (Polynomial time reduction (Karp reduction [44])). There is a
polynomial time reduction from decision problem A to decision problem B if and
only if there is a polynomial time algorithm that translates any yes-instance of
problem A into a yes instance of problem B and any no-instance of problem A into
a no-instance of problem B.

Theorem 1.5. If for two decision problems A and B, there is a polynomial time
reduction from A to B and B is polynomial time solvable, then A is also polynomial
time solvable.

Proof. Suppose IA is an instance for Problem A we use the exiting polynomial time
algorithm to translate this instance to IB an instance for Problem B. We now use
the existing polynomial time algorithm to solve IB , which answers us either “no” or
“yes.” Since the reduction translates yes-instances to yes-instances and no-instances
to no-instances, the answer to IB for Problem B is the answer to IA for Problem
A.

Definition 1.20 (Complexity class NP). A decision problem P is in the complexity
class NP if there is a polynomial time algorithm A such that an instance I of P
is a yes-instance if and only if there is a polynomial size certificate q(I) such that
Algorithm A verifies (outputs “yes”) q(I) in polynomial time.

A generally made assumption is that P 6= NP and therefore that there are com-
putationally hard problems in NP. This justifies seeking non-exact (approximation)
algorithm for problems that are NP-hard.

Definition 1.21 (NP-hard problem). A Problem A is NP-hard if for any Problem
B in NP there is a polynomial reduction to A.

If a problem in NP is NP-hard, we call it NP-complete.

A method that is often used in practice to solve optimization problems is trans-
lating the problem to a linear programming (LP) problem.
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Definition 1.22 (Linear programming (LP)). Linear programming is the minimiza-
tion problem A ∈ Rm×n b ∈ Rm c ∈ Rn that solves

max
x∈Rn
{cx |Ax ≤ b} .

Linear programming is a theoretically attractive way to formulate problems since
it is polynomial time solvable by the ellipsoid method [28].

Theorem 1.6 ([28]). Linear programming is polynomial time solvable.

We also distinguish integer linear programming (ILP), where x ∈ Zn, and mixed
integer linear programming (MIP), where for some set K ⊂ {1, . . . , n} we have
xk ∈ Z for k ∈ K and xk ∈ R for k /∈ K. Under the assumption that P 6= NP, these
problems are not polynomial time solvable [56].

1.4 Thesis outline

In Chapter 2, we analyze the price of anarchy for the classical related machine
scheduling problem, to minimize the total completion time. While the main focus is
on the SPT rule (shortest processing time first) as scheduling rule, we also discuss
some other possible scheduling rules. The main result is an upper bound of 2 for the
price of anarchy, if SPT is used as the scheduling rule. We also give a lower bound
of e/(e − 1) ≈ 1.58 . The upper bound proof is based on a new characterization
of the optimal solution, which is interesting in its own right. Both the lower and
the upper bound hold for pure Nash equilibria, mixed Nash equilibria, correlated
equilibria and coarse correlated equilibria. Most of the results from Chapter 2 are
published as [34].

In Chapter 3, we consider a private information setting. We address the design of
optimal mechanisms for a single machine scheduling problem. In this setting, both
the weight and the processing time, are private to the jobs. Assuming that jobs need
to be compensated for waiting, and the cost of waiting is governed by the private
weight of a job, the goal is to find a mechanism that minimizes the total expected
payment that is made to the jobs.

The problem where only weights are private can be solved in polynomial time.
We settle the complexity of the problem with private weights and processing times,
or in other words, with multi-dimensional types. We show that a randomized op-
timal mechanism can be computed in polynomial time. Our result is obtained by
linear programming techniques, and at its core we show that an exponential size LP
relaxation of the problem can be projected to a polynomial size LP, without any loss
in performance. The result is an LP that computes a so-called interim solution, in
our case expected start times of jobs. The final step is then to translate this interim
solution to a randomized mechanism. This requires a decomposition of a point in
the scheduling polytope into a convex combination of vertices, which can be done
efficiently too. The results from Chapter 3 are published as [35, 36].
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With the above, we settle the complexity of the problem to compute an optimal
randomized mechanism. However, it is not clear if and how the procedure could be
derandomized, and indeed, the complexity of computing an optimal deterministic
mechanism remains open. It is not even clear if the corresponding decision problem
belongs to the class NP. Therefore, we consider in Chapter 4 the same problem as
in Chapter 3, where we additionally impose a condition called IIA, independence of
irrelevant alternatives. For the single machine scheduling problem, it requires that
the relative order of any two jobs must only depend on the types of these jobs, but
not on the types of any other job. When solutions satisfy the IIA condition, the
problem falls in the class NP, because any such mechanism can be represented as
a linear ordering of the types across all jobs. We show how this can be exploited
algorithmically, and present results using local search and other constructive meth-
ods to compute deterministic IIA mechanisms. In computational experiments, we
confirm that these methods are fast, and have the potential to compute close to
optimal mechanisms, even for very large scale instances that are hard to tackle with
the LP-based techniques of Chapter 3. The results from Chapter 4 are found in [39].

In Chapter 5, we address the algorithmic problem to decompose a given point in
the scheduling polytope into a convex combination of vertices. While this problem
arises in the mechanism design context of Chapter 3, it turns out to be of interest
in its own right. A polynomial time algorithm follows from standard techniques
whenever the separation problem for a given polytope can be solved in polynomial
time. However that does not necessarily yield combinatorial algorithms. A related
problem is to efficiently compute the intersection of a polytope with a line. For that
problem, we give a, combinatorial, time O(n2 log n) algorithm for the scheduling
polytope. From that, a time O(n3 log n) algorithm follows for the decomposition
problem. The main result of this chapter, however, is a time O(n2) algorithm to solve
the decomposition problem for the scheduling polytope. The algorithm exploits the
geometry of the scheduling polytope, and crucially uses the fact that the scheduling
polytope is a zonotope, i.e. that all its faces are centrally symmetric. From that, we
derive a simple description of the barycentric subdivision of the scheduling polytope,
and show how that can be exploited algorithmically to solve the decomposition
problem. The existence of an algorithm with time complexity O(n2) was previously
only known for the permutahedron. Our algorithm not only generalizes this to the
scheduling polytope, but also adds a completely new, geometric interpretation. The
different parts from Chapter 5 are published as [35, 36] and [37, 38].

Publications underlying this thesis:

[34] R. Hoeksma and M. Uetz. The price of anarchy for minsum related machine
scheduling. In R. Solis-Oba and G. Persiano, editors, Approximation and On-
line Algorithms, volume 7164 of Lecture Notes in Computer Science, pages
261–273. Springer, 2012.

[35] R. Hoeksma and M. Uetz. Two dimensional optimal mechanism design for
a sequencing problem. In M. Goemans and J. Corréa, editors, Integer Pro-



1.4 Thesis outline 19

gramming and Combinatorial Optimization, volume 7801 of Lecture Notes in
Computer Science, pages 242–253. Springer, 2013.

[36] R. Hoeksma and M. Uetz. Optimal mechanism design for a sequencing prob-
lem with two dimensional private data. Invited for publication in Operations
Research. Under review, 2014.

[37] R. Hoeksma, B. Manthey, and M. Uetz. Decomposition algorithm for the
single machine scheduling polytope. In P. Fouilhoux, L. E. N. Gouveia, A. R.
Mahjoub, and V. T. Paschos, editors, Combinatorial Optimization, Lecture
Notes in Computer Science, pages 280–291. Springer, 2014.

[38] R. Hoeksma, B. Manthey, and M. Uetz. Decomposition algorithm for the single
machine scheduling polytope. Submitted to Discrete Optimization. Under
review, 2014.

[39] R. Hoeksma, H. Nguyen, and M. Uetz. Fast and scalable mechanism design for
a single machine sequencing problem with private data. Manuscript, 2014.
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CHAPTER 2

Scheduling selfish jobs on related machines

In this chapter we consider scheduling multiple jobs on multiple machines. We
compare equilibrium outcomes to optimal outcomes.

We treat the related machine scheduling problem. We are given n jobs, each with
given non-preemptive processing requirements. Each of these jobs needs to be pro-
cessed on exactly one of m machines, where the machines may have different speeds.
The total processing time needed to process a Job j with processing requirement
pj ∈ R+ on a Machine i with speed si ∈ R+ is pj/si. We aim to minimize the sum
of (or average over) the completion times of all jobs. We refer to this problem as
the minsum related machine scheduling problem. This is one of the classical models
in the area of scheduling and was solved, already in the 1960s, by Conway et al.
[14]. In the 3-field notation of Graham et al. [27], the problem is denoted Q | |

∑
Cj .

The problem is a special case of the, more general, unrelated machine scheduling
problem, R | |

∑
Cj , where the processing time of Job j on Machine i can be any

value pij ∈ R+.
We look at this problem from a game theoretic angle, where the jobs are selfish

players. Each of the jobs selfishly chooses the machine on it will be processed. When,
for each machine a sequencing rule for the jobs is given, the game is well defined and
we can investigate its Nash equilibria and the price of anarchy. In this chapter we
mainly discuss the setting where on each machine the jobs are processed in shortest
processing time first (SPT) order. For this setting pure Nash equilibria always exist.
While scheduling the jobs in SPT order is optimal on a local, per machine, level, the
resulting Nash equilibria in general are not globally optimal. Notice that the problem
that we have described so far is an evaluation of SPT as a coordination mechanism as
defined by Christodoulou et al. [11], who suggested to use local scheduling rules per
machine in order to influence the dynamics of the game and thereby the quality of the
corresponding equilibrium outcomes. We will also briefly discuss other coordination
mechanisms for this problem.

Our contribution is an analysis of the price of anarchy for the minsum related
machine scheduling game. More specifically, our main result is a proof that the price
of anarchy is at most 2. Our analysis uses semi-smoothness. Therefore, the results
extend beyond pure Nash equilibria. We also give a parametric instance to show
that the price of anarchy cannot be less than e/(e − 1) ≈ 1.58. This lower bound
even holds for Pure Nash equilibria.

The literature on analysis of the price of anarchy for scheduling problems is very
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extensive. Most notably, following the work by Koutsoupias and Papadimitriou
[45], which introduced the price of anarchy measure, a lot of work was done on
the, egalitarian1, makespan objective, Cmax(= maxj Cj), as social choice function
[4, 11, 18, 42, 45, 70]. Like this chapter, recent publications focus more on utilitarian
social choice functions [6, 12, 15, 60].

The papers by Correa and Queyranne [15] and Cole et al. [12] are closely related
to our work. Both papers address the same problem as we do, but with additional
job weights wj and in the more general context of unrelated machine scheduling.
One of the main results in both papers is a proof that the price of anarchy is 4 when
machines sequence their jobs locally optimal, that is, according to non-increasing
ratios of weight over processing time. Cole et al. [12] also give an instance which
establishes a lower bound of 4 for the price of anarchy, even in the unweighted case.
The results from this chapter fit nicely into that context.

The organization of this chapter is as follows. In Section 2.1 we briefly recap
an algorithm by Horowitz and Sahni [40], which finds optimal solutions for the
minsum related machine scheduling problem. We then give a new characterization
of such optimal solutions, which is interesting in its own right and crucial for the
subsequent analysis. In Section 2.2.1 we prove that the price of anarchy is not
greater than 2. We do that by showing that the game is (2, 0)-semi-smooth. In this
proof, we use the characterization of optimal solutions from Section 2.1. Section
2.2.2 describes a parametric instance, for which we show that its price of anarchy is
equal to e/(e− 1) > 1.5819. In Section 2.4 we compare our outcomes for the SPT
coordination mechanism to other coordination mechanisms.

2.1 Characterization of optimal solutions

In this section we first give an algorithm that finds optimal solutions for the minsum
related machine scheduling optimization problem, the Minimum Mean Flow Time
(MFT) algorithm as described by Horowitz and Sahni [40, p. 321]. From that algo-
rithm we establish a new characterization for optimal solutions for minsum related
machine scheduling. This characterization is crucial to our analysis in Section 2.2.1.

We denote by N the set of n jobs and by M the set of m machines. Each Job
j has a processing requirement pj and each Machine i has a speed si. The time it
takes Machine i to process Job j is equal to pij = pj/si. W.l.o.g. we assume that
p1 ≤ p2 ≤ · · · ≤ pn and s1 ≤ s2 ≤ · · · ≤ sm. Ties on the ordering are assumed to be
broken consistently and we assume this is done based on index.

The minsum related machine scheduling problem is solved in O(mn log n) com-
putation time by the MFT algorithm. It is a refinement of the simple matching
solution presented earlier by Conway et al. [14, pp. 78-79]. The MFT algorithm

1See Myerson [50] for a discussion of utilitarian and egalitarian social choice functions. The
interpretation of makespan as egalitarian indeed makes sense in models where the objectives of the
job-agents is the total load of the machine they are processed on, as for example in Koutsoupias
and Papadimitriou [45].
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computes the optimal assignment of jobs to machines by considering them descend-
ing in processing requirement, and the jobs eventually assigned to a given machine
are then sequenced ascending in their processing time.

For a single machine we know from Theorem 1.2 that scheduling the jobs in
order of ascending processing times is optimal for minimizing the sum of completion
times. The optimal order of the jobs on a single machine trivially remains the same
if we scale all processing times by a factor of s (i.e. the speed of the machine).
As an alternate proof of optimality of the SPT rule for the single machine case,
the contribution of a job can be measured by its position in the schedule and its
processing time. This follows from rewriting the objective function as follows. Let o
be an ordering of the jobs and let o(k) denote the k-th job in this ordering, then

n∑
k=1

Co(k) =

n∑
k=1

k∑
l=1

po(l) =

n∑
k=1

(n− k + 1)po(k) .

From this we see immediately that any optimal order needs to be an SPT order. See
Figure 2.1 for an illustration of this computation.

Job 1 Job 2 Job 3

p1 = C1

p1 + p2 = C2

p1 + p2 + p3 = C3 +

3p1 + 2p2 + 1p3 =
∑
j Cj

Figure 2.1: On a single machine a jobs position determines its total contribution to
the sum of completion times objective.

The idea for a single machine, from the proof above, can be extended to the case
of related machines. This results in the MFT algorithm [40], Algorithm 2.1.

Algorithm 2.1 MFT Algorithm for minsum related machine scheduling

1: For each Machine i set zi = 0
2: while Not all jobs are placed do
3: Take from the unscheduled jobs the longest Job j
4: Assign Job j to the machine with the smallest value of (zi + 1)/si
5: For that machine update zi = zi + 1
6: end while
7: Sort the jobs on each machine in SPT order

Similar to the single machine case, the different values (zi + 1)/si are the values
for a job’s possible positions in the schedule, as, in general, the x-th last job on a
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machine contributes to the objective value x times its processing requirement divided
by the machines speed. The algorithm assigns the currently longest unscheduled job
to the machine with the currently smallest position value.

Theorem 2.1 (Horowitz and Sahni [40]). Any optimal schedule for Q | |
∑
Cj can

be computed by the MFT algorithm with the proper tie breaking rule.

From here on we assume that each machine has a predetermined scheduling rule
to determine the schedule for the jobs assigned to it. Unless stated otherwise, this
is the SPT rule. That said, we will identify a schedule with an n-vector σ, where σj
is the machine on which Job j is scheduled.

Next, let z(σ, j) be the vector such that zi(σ, j) = |{k > j|σk = i}|, is the number
of jobs on Machine i in schedule σ that have higher index than j. Then, any schedule
σ is optimal if and only if 2

zσj (σ, j) + 1

sσj
≤ zi(σ, j) + 1

si
for all jobs j and all machines i . (2.1)

This because, for all machines i, (zi(σ, j) + 1)/si is the value of the next position
on Machine i upon placement of Job j by the MFT algorithm. pj(zσj (σ, j) + 1)/sσj
is exactly the contribution of Job j to the objective value in schedule σ. The sum of
these contributions needs to be minimized by any optimal schedule. The following
lemma provides our new characterization of optimal solutions.

Lemma 2.2. A schedule σ is optimal for Q | |
∑
Cj if and only if 3

zi(σ, j) + 1

si
≥ z`(σ, j)

s`
for all machines i and ` . (2.2)

Proof. We show that (2.2) is true if and only if (2.1) is true. Let σ be an optimal
schedule and let the ordering of the jobs be fixed and in SPT order. Note that
zi(σ, j) ≥ zi(σ, k) for all machines i and all jobs k ≥ j. Therefore, we have from
(2.1) that

zi(σ, j) + 1

si
≥ zi(σ, k) + 1

si
≥ zσk(σ, k) + 1

sσk
,

for all machines i and all jobs k ≥ j. Since for any Machine ` either z`(σ, j) = 0,
or there is a Job k > j such that σk = ` and z`(σ, j) = zσk(σ, j) = zσk(σ, k) + 1, it
follows that

zi(σ, j) + 1

si
≥ z`(σ, j)

s`
for all machines i and ` .

2In case of ties in the SPT ordering, there exist multiple optimal schedules, produced by inter-
changing symmetric jobs, jobs with equal processing times, in any optimal schedule. In this case,
(2.1) and (2.2) describe optimal schedules that correspond to one particular SPT ordering and the
rest can be obtained by interchanging symmetric jobs.

3See Footnote 2
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Now let σ be a schedule that satisfies (2.2) and suppose it does not satisfy (2.1).
Then there exist a Job j ∈ N and a Machine i ∈M such that

zσj (σ, j) + 1

sσj
>
zi(σ, j) + 1

si
.

However, then we have for Job j − 1 that

zσj (σ, j − 1)

sσj
=
zσj (σ, j) + 1

sσj
>
zi(σ, j) + 1

si
=
zi(σ, j − 1) + 1

si
,

which contradicts (2.2).

An intuitive interpretation for (2.2) is that, when applying the MFT algorithm,
a job that is placed on a machine can not get a better position than the jobs already
placed on a machine. While it is intuitive that this is indeed a necessary condition
for the optimal solution, the intuition that it is also sufficient is not that clear. In
that sense, it is indeed a nontrivial reformulation of (2.1).

2.2 Price of anarchy for the SPT scheduling rule

In this section we provide both an upper and a lower bound on the price of anarchy
for the SPT scheduling rule for the related machine scheduling game.

We denote schedules in the same way as in Section 2.1. With slight abuse of
notation, we let σ also represent the strategy profile of the players, such that σj is
the machine chosen by Job j. Recall that σ−j denotes the (n − 1)-vector obtained
from σ by deleting σj , such that σ = (σj , σ−j). For the problem Q | |

∑
Cj with SPT

as local scheduling rule, a strategy profile ν = (νj , ν−j) is a pure Nash equilibrium
if and only if for all jobs j and all machines i,∑

k≤j
νk=νj

pk
sνj
≤
∑
k<j
νk=i

pk
si

+
pj
si

. (2.3)

It is well known [32] that the Ibarra-Kim algorithm [41] constructs all Nash
equilibria depending on the way ties are broken. This is even true for the more
general unrelated machine scheduling problem [32, 42]. For related machines the
algorithm is described in pseudo-code by Algorithm 2.2.

Algorithm 2.2 Ibarra-Kim Algorithm for problem Q | |
∑
Cj

1: while Not all jobs are placed do
2: Take from the unscheduled jobs the shortest Job k
3: Let Machine l be the machine where Job k has minimal completion time
4: Schedule Job k directly after the jobs already scheduled on Machine l
5: end while
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The Ibarra-Kim algorithm was originally designed as an approximation algorithm
for unrelated machine scheduling [41]. Therefore, the main result that we discuss
in this chapter is also an analysis of an upper and lower bound to the performance
of this, simple, greedy, algorithm, since the outcomes exactly coincide with Nash
equilibria. To the best of our knowledge these performance bounds for the related
machine scheduling problem Q | |

∑
Cj have not yet been analyzed. Most probably

because the problem to find optimal solutions was settled long before by Conway
et al. [14].

2.2.1 Upper bound on the price of anarchy

Here we establish an upper bound on the price of anarchy for minsum related ma-
chine scheduling. Our proof uses semi-smoothness for cost-minimization games from
Definition 1.12. For the proof, we use the characterization of the optimal solution
from Lemma 2.2.

In the following, let σ be an optimal schedule resulting from the MFT algorithm
and recall that for the objective value in the optimal solution σ we have

n∑
j=1

Cj(σ) =

n∑
j=1

(
zσj (σ, j) + 1

) pj
sσj

.

The next theorem is the main result of this chapter.

Theorem 2.3. The price of anarchy for the minsum related machine scheduling
problem, Q | |

∑
Cj, with SPT as local scheduling rule is no greater than 2.

Proof. We show that the game is (2, 0)-semi-smooth, by showing that

n∑
j=1

Cj(σj , ν−j) ≤ 2

n∑
j=1

Cj(σ) , (2.4)

for an optimal schedule σ and any strategy profile ν.
Let Ni(σ) = {j|σj = i} be the set of jobs scheduled on Machine i in the optimal

solution, σ. Likewise, let Ni(ν) = {j|νj = i} be the set of jobs scheduled on Machine
i in schedule ν. For any Job j in Ni(σ), its completion time Cj(σj , ν−j) consists of
the processing times of all jobs that are on Machine i in ν and that have smaller
index than j, plus its own processing time on Machine i. Summing the completion
times of all jobs that are on Machine i in the optimal solution gives us

∑
j∈Ni(σ)

Cj(σj , ν−j) =
∑

j∈Ni(σ)

pjsi +
∑

k∈Ni(ν)
k<j

pk
si


=

∑
j∈Ni(σ)

pj
si

+
∑

j∈Ni(σ)

∑
k∈Ni(ν)
k<j

pk
si

. (2.5)
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Note that the number of times that the processing time of Job k is counted on
the right hand side of (2.5) equals the number of jobs with higher index than j on
Machine i in the optimal solution, times 1

si
. In other words, the second part of (2.5)

can be rewritten as ∑
j∈Ni(σ)

∑
k∈Ni(ν)
k<j

pk
si

=
∑

k∈Ni(ν)

zi(σ, k)
pk
si

.

This gives us ∑
j∈Ni(σ)

Cj(σj , ν−j) =
∑

j∈Ni(σ)

pj
si

+
∑

k∈Ni(ν)

zi(σ, k)
pk
si

.

Now, note that in this expression, by definition, σj = νk = i, so∑
j∈Ni(σ)

Cj(σj , ν−j) =
∑

j∈Ni(σ)

pj
sσj

+
∑

k∈Ni(ν)

zνk(σ, k)
pk
sνk

.

Summing over all machines i leads to

n∑
j=1

Cj(σj , ν−j) =

m∑
i=1

∑
j∈Ni(σ)

Cj(σj , ν−j)

=

m∑
i=1

∑
j∈Ni(σ)

pj
sσj

+

m∑
i=1

∑
k∈Ni(ν)

zνk(σ, k)
pk
sνk

=

n∑
j=1

pj
sσj

+

n∑
j=1

zσνj (j)
pj
sνj

.

From Lemma 2.2 we know that

n∑
j=1

zσνj (j)
pj
sνj
≤

n∑
j=1

(
zσj (σ, j) + 1

) pj
sσj

=

n∑
j=1

Cj(σ) . (2.6)

Also, the completion time of any job is at least its processing time on the machine
it is scheduled on, so

n∑
j=1

pj
sσj
≤

n∑
j=1

Cj(σ) . (2.7)

Combining the above, we get

n∑
j=1

Cj(σj , ν−j) ≤ 2

n∑
j=1

Cj(σ)

for all strategy profiles ν.
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2.2.2 Lower bound on the price of anarchy

In this section we describe a parametric instance which has a price of anarchy that
is asymptotically equal to e/(e− 1). For these instances the Nash equilibrium is the
schedule with all jobs on the fastest machine (which is easily shown to be an upper
bound on the quality of Nash equilibria in general, so in that sense, this is a worst
case scenario).

Instance 2.1. Let I be the parametric group of instances I(s) that satisfy the
following. I(s) has m machines, one of which has speed s > 1, while all the other
machines have speed 1. Let all speeds be integer. Furthermore, I(s) has n = m+s−1
jobs, with processing requirement equal to

pj =

{
1 if 1 ≤ j ≤ s
xj−s if s+ 1 ≤ j ≤ n ,

where x = s/(s− 1).

Lemma 2.4. Instances from I have a Nash equilibrium with all jobs on the fastest
machine.

Proof. In the schedule with all jobs in SPT order on the fastest machine, the com-
pletion time of a Job j < s is equal to

Cj =

j∑
k=1

pk
s

=

j∑
k=1

1

s
=
j

s
≤ 1 . (2.8)

For a Job j ≥ s, the completion time is equal to

Cj =

j∑
k=1

pk
s

=
s− 1

s
+

j∑
k=s

(
s
s−1

)k−s
s

=
1

s

(
s− 1 +

j−s∑
k=0

(
s

s− 1

)k)

=
1

s

s− 1 +

(
s
s−1

)j−s+1

− 1(
s
s−1

)
− 1


=

1

s

(
s− 1 + (s− 1)

(
s

s− 1

)j−s+1

− (s− 1)

)

=

(
s

s− 1

)j−s
= pj . (2.9)

Thus, since all other machines have speed 1, the Nash equilibrium condition, (2.3),
holds.
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We use Instance 2.1 to compute the lower bound of e/(e − 1) on the price of
anarchy.

Theorem 2.5. The price of anarchy for the minsum related machine scheduling
problem, Q | |

∑
Cj, with SPT local scheduling rule, is no less than e/(e− 1) ≈ 1.58.

Proof. Consider instances I(s) from I as defined above. In the optimal solution the
s longest jobs are on the fastest machine. All other jobs are on a slow machine. So
the objective value in the optimal solution is equal to

OPT(I(s)) =

s−1∑
j=1

pj +

n−s∑
j=s

pj +

n∑
j=n−s+1

j∑
k=n−s+1

pk
s

=

s−1∑
j=1

1 +

n−s∑
j=s

xj−s +

n∑
j=n−s+1

j∑
k=n−s+1

xk−s

s

= s− 1 +

n−2s∑
j=0

xj +

n∑
j=n−s+1

1

s

(
j−s∑
k=0

xk −
n−2s∑
k=0

xk

)

= s− 1 + (s− 1)xn−2s+1 − (s− 1) +

n∑
j=n−s+1

(
xj−s − xn−2s

)
= (s− 1)xn−2s+1 +

n−s∑
j=n−2s+1

xj −
n∑

j=n−s+1

xn−2s

= (s− 1)xn−2s+1 + (s− 1)xn−s+1 − (s− 1)xn−2s+1 − sxn−2s

= (s− 1)xn−s+1 − (s− 1)xn−2s+1 . (2.10)

From Lemma 2.4 we know that the schedule with all jobs on the fastest machine
is a Nash equilibrium. From (2.8) and (2.9) we know that the completion time of
the jobs in this schedule is equal to

Cj =


j
s if j ≤ s− 1(

s
s−1

)j−s
otherwise

.

From this we compute the objective value in the Nash equilibrium
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NE(I(s)) =

s−1∑
j=1

j

s
+

n∑
j=s

xj−s

=
s(s− 1)

2s
+

n−s∑
j=0

xj

=
(s− 1)

2
+ (s− 1)xn−s+1 − (s− 1)

= (s− 1)xn−s+1 − (s− 1)

2
. (2.11)

Combining (2.10) and (2.11) gives us the price of anarchy:

POA(I(s)) =
(s− 1)xn−s+1 − (s−1)

2

(s− 1)xn−s+1 − (s− 1)xn−2s+1

=
xn−s+1 − 1

2

xn−s+1 − xn−2s+1

=
xs − 1

2x
−(n−2s+1)

xs − 1

=

(
s
s−1

)s
− 1

2

(
s
s−1

)−(n−2s+1)

(
s
s−1

)s
− 1

. (2.12)

Now, if we let n go to infinity, (2.12) becomes:

lim
n→∞

POA(I(s)) =

(
s
s−1

)s
(

s
s−1

)s
− 1

, (2.13)

and letting s also go to infinity, (2.13) goes to e/(e− 1) ≈ 1.58.

2.3 Special cases

Two special cases of this problem arise when either the machines or the jobs are
all identical. In both these cases all pure Nash equilibria are optimal solutions.
However, even if both the machines and the jobs are identical, i.e. si = 1 for all i
and pj = 1 for all j, mixed Nash equilibria have price of anarchy equal to 3/2.

Theorem 2.6. The problem of scheduling n identical jobs on m = n identical
machines has a mixed Nash equilibrium with sum of completion times equal to
3/2− 1/(2m) times the sum of completion times in the optimal solution.
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Proof. The optimal solution to this problem schedules each job on a machine by itself
and has sum of completion times equal to n. Recall that ties are broken consistently
over all machines and according to the index of the jobs. Now consider the mixed
Nash equilibrium, ν, where each job is scheduled on any machine with probability
1/n. Then for each Job j, the load of the jobs with index less than j is divided
equally over all machines. So Job j can not improve, since all machines appear the
same to it. Therefore, ν is indeed a mixed Nash equilibrium. Now, for any Job j,
the expected completion time is equal to

Eσ∼νCj(σ) = 1 +
j − 1

n
.

So summing over all jobs gives us

n∑
j=1

Eσ∼νCj(σ) =

n∑
j=1

1 +
j − 1

n
= n+

n(n− 1)

2
n =

3n

2
− 1

2
.

Since n = m, dividing by n gives 3/2− 1/(2m).

The identical machine model, where all machines have speed 1, has robust price
of anarchy of exactly 3/2−1/(2m). This result was also found by Rivera Letelier [61]
and Rahn and Schäfer [60]. Here we give a short and simple proof that we discussed
in private communication with J.R. Correa. The proof follows the framework of β-
niceness as defined by Augustine et al. [3] and, its extended version, (λ, µ)-niceness
as defined by Anshelevich et al. [2]. In fact, we prove that the game is ( 3

2 −
1

2m )-nice
and thus also ( 3

2 −
1

2m , 0)-nice. This implies bounds on Nash equilibria, mixed Nash
equilibria and correlated equilibria, but not coarse correlated equilibria [2].

Theorem 2.7. The price of anarchy for the minsum identical machine scheduling
problem, that schedules the jobs in a fixed order on all machines, is 3/2− 1/(2m).

Proof. Let the jobs be indexed according to the order in which the machines process
them. For any strategy profile ν and any Job j, let ν′j be a best response of j to ν−j .
Thus ν′j is any one strategy that minimizes Job j’s completion time, given that all
other jobs keep their original strategy.

Cj(ν
′
j , ν−j) ≤ Cj(ν∗j , ν−j) for all j ∈ N , ν ∈Mn and ν∗ ∈M .

Since all machines have speed 1, minimizing completion time is the same as minimiz-
ing start time. Therefore, the completion time for Job j in profile (ν′j , ν−j) can never
be greater than the situation in which all machines have equal load from the jobs up
to Job j. In that situation the load of each machine would be exactly

∑j−1
k=1 pk/m.

Since this holds for all jobs j ∈ N , we have

∑
j∈J

Cj(ν
′
j , ν−j) ≤

∑
j∈J

j−1∑
k=1

pk
m

+
∑
j∈J

pj .
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Let σ be a strategy profile that results in an optimal solution. The lower bound on
the optimal solution from Eastman et al. [21, Thm. 1] gives:

∑
j∈J

j∑
k=1

pk
m

+

(
1

2
− 1

2m

)∑
j∈J

pj ≤
∑
j∈J

Cj(σ) .

Therefore

∑
j∈J

Cj(ν
′
j , ν−j) ≤

∑
j∈J

j−1∑
k=1

pk
m

+
∑
j∈J

pj (2.14)

≤
∑
j∈J

j∑
k=1

pk
m

+

(
1− 1

m

)∑
j∈J

pj (2.15)

≤
∑
j∈J

Cj(σ) +

(
1

2
− 1

2m

)∑
j∈J

pj (2.16)

≤
(

3

2
− 1

2m

)∑
j∈J

Cj(σ) . (2.17)

This proves that the game is ( 3
2 −

1
2m , 0)-nice and, thus, that the price of anarchy is

equal to 3
2 −

1
2m .

2.4 Other scheduling rules

A natural question to ask is if there exist other scheduling rules that outperform the
SPT scheduling rule. In fact, it is not hard to see that for any instance there exists
a set of scheduling rules that results in optimal solutions.

Theorem 2.8. For any instance of the related machine scheduling game, there exists
a set of scheduling rules for the machines such that any Nash equilibrium is an
optimal solution.

Proof. Let σ be an optimal assignment of the jobs to the machines. Let Ni be
the set of jobs that are scheduled on Machine i in σ. Let N i be the set of jobs
that are not scheduled on Machine i in σ. Consider the following set of scheduling
rules: for any Machine i jobs in Ni are scheduled before jobs not in Ni. Jobs
within Ni and N̄i are scheduled in optimal order, which in this case is SPT order.
Now let ν be a Nash equilibrium assignment. Then Cj(ν) ≤ Cj(σj , ν−j) for all
jobs j and since only jobs from Nσj could be scheduled before Job j on machine
σj , Cj(σ) ≥ Cj(σj , ν−j) ≥ Cj(ν) for all jobs j. Therefore, ν must be an optimal
schedule.

Note that the proof above uses a (1, 0)-smoothness argument, which directly
implies that the robust price of anarchy for this game is equal to 1. Moreover it holds
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for any machine scheduling settings, where jobs only care about their completion time
and the objective function is monotone in those completion times. In other words,
if none of the jobs completion times increase neither does the objective function.

While Theorem 2.8 shows that, for any given instance, we can find a set of local
scheduling rules, such that Nash equilibria are optimal solutions, these heavily rely
on the fact that we know the complete instance in advance. It seems reasonable
to assume that we have to decide on these scheduling rules without knowing which
jobs we will encounter. Christodoulou et al. [11] introduce coordination mechanisms
as a model that fits exactly this idea. They define a coordination mechanism for a
scheduling problem simply as a set of local scheduling rules. They note specifically
that “the scheduling policies should be defined before the set of loads.” Therefore, a
coordination mechanism defines scheduling rules independent of the set of all jobs.
Recall that the single machine scheduling polytope for half times, (1.2) and (1.3),
describes the convex hull of all feasible start time vectors without idle time. In
general we want to allow coordination mechanisms to schedule the jobs with idle
time. Therefore, we consider the, unbounded, scheduling polyhedron for completion
times, described by:∑

j∈K
Cjpj ≥ g(K)− 1

2

∑
j∈K

p2
j for all K ⊂ N . (2.18)

This includes not only schedules with idle time, but also allows preemption and
randomization. For a given processing tmes vector p let QC(p) denote the scheduling
polyhedron for completion times. We define a coordination mechanism for Q||

∑
Cj

as follows.

Definition 2.1 (Coordination mechanism for Q||
∑
Cj). A coordination mechanism

defines, given a set of machines, M , for each Machine i a function fi : Rk+ → Rk+,
for all positive integers k. That is, for any set of k jobs, represented by a vector of
processing times, p, the function fi(p) is a vector of completion times contained in
the scheduling polyhedron, QC(p).

As we have defined coordination mechanisms, above, it fits the definition of
strongly local coordination mechanisms by Azar et al. [4]. They define this concept,
for unrelated machines, as coordination mechanisms in which the ordering of jobs
on Machine i only depends on the processing times of the jobs on Machine i. Our
definition of coordination mechanisms can be naturally extended for these more
general settings, where jobs have more properties than only processing times, for
example weights, release dates or different processing times on each machine. We
make this extension, simply by allowing each Machine i to define a function, fi :
T k+ → Rk+, where T denotes the set of all possible types that a job can have. These
types, then, include all the parameters that define such a job.

The following theorem shows that the coordination mechanism setting indeed
rules out trivial solutions, such as the one in Theorem 2.8.

Theorem 2.9. No coordination mechanism for Q||
∑
Cj has pure price of anarchy

equal to 1.
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Proof. Consider an instance with two machines. Machine 1 has speed s1 = 2 and
Machine 2 has speed s2 = 3. First consider a job set N = {1, 2}, with processing
requirements p1 = 1 and p2 = 2. The unique optimal solution is to schedule Job
1 on Machine 1 and Job 2 on Machine 2, with sum of completion times equal to
7/6. Suppose there is a coordination mechanism for Q||

∑
Cj that has pure price of

anarchy equal to 1. Then, if Machine 2 gets assigned job set {1, 2}, and if it would
schedule these jobs in SPT order without idle time, then Job 1 achieves a completion
time less than 1/2 on Machine 2. Hence, it can never be equilibrium for that job
to select Machine 1 and the coordination mechanism fails to compute the optimal
solution if the job set is {1, 2}. Thus, if Machine 2 gets assigned job set {1, 2}, it
can not schedule them, in SPT order without idle time. Now, by introducing yet
another job, Job 3, identical to Job 1, we know, by the same reasoning, that Machine
2 cannot use SPT for job sets {1, 2} and {1, 3}. So, the coordination mechanism must
fail to compute the optimal solution for job set {1, 2, 3}.

Notice that in the above proof, and in Definition 2.1, it is still feasible for a local
scheduling rule to explicitly exploit the information about any other machines. In
particular, the fact that there are other machines. Otherwise, the above proof would
even be simpler, as any machine would need to schedule any job set optimally for
that machine, i.e. in SPT order. In other words, the functions fi, that describe
the local scheduling rules, may, in general, be dependent on the vector of machine
speeds, and in particular on the number of machines. If that is not allowed, either,
the above instance with job set {1, 2} even leads to an optimality gap, 8/7. We do
not go into further detail on either case here, but rather go back to SPT, or more
generally, any coordination mechanism that schedules the jobs according to priority
list on each machine, and more specifically, the same priority list on all machines.

Definition 2.2. We call a coordination mechanism a list coordination mechanism if
there is a single order of the jobs, such that each machine processes the jobs in that
order.

If we restrict ourselves to these list coordination mechanisms we can directly see
from the proof for Theorem 2.6 that the same reasoning holds and, thus, we get:

Theorem 2.10. Any list coordination mechanism for the minsum identical machine
scheduling problem has mixed price of anarchy at least 3/2− 1/(2m).

One specific coordination mechanism of interest is a preemptive one where each
machine schedules the jobs in SPT order but releases each job only after holding it for
a time period that corresponds to the costs it imposes on other jobs on that machine.
Cole et al. [12] refer to this coordination mechanism as proportional sharing. They
show that, for the unrelated machine model with weights, the price of anarchy of

proportional sharing is 1 + φ, where φ = 1+
√

5
2 ≈ 1.618 is the golden ratio. For

that model this is significantly better than the price of anarchy for the WSPT rule,
which is equal to 4. Rahn and Schäfer [60] find the same coordination mechanism in
relation to α-altruistic extensions of scheduling games. These are extensions where
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the perceived utility of players is partly influenced by the total social costs. Also, this
coordination mechanism is closely related to VCG payments for mechanism design,
where players compensate each other for the costs they impose by participating in
the game, (see e.g. [20, Chap. 15]).

For the related machine scheduling model with minsum objective, the propor-
tional sharing rule results in the following completion times for the players, given a
strategy vector σ.

Cj(σ) =
∑
k∈Nσj
k≤j

pk +
∑
k∈Nσj
k>j

pk =
∑
k∈Nσj

min{pk, pj} .

While the proportional sharing rule improves the price of anarchy forR||
∑
wjCN ,

compared to WSPT, the following simple observation shows that, for the propor-
tional sharing rule, we have a lower bound of 2 − 2

n+1 on the price of anarchy for
Q||
∑
Cj .

Consider single machine scheduling problem, with n jobs, with unit processing
time and unit weight, 1|pj = 1|

∑
Cj . The optimal solution is processing the jobs

non-preemptively in any order. This has objective value n(n+1)
2 . With the propor-

tional sharing rule, each Job j has Cj = n. Therefore, the objective value is equal
to n2 and the price of anarchy is 2− 2

n+1 .
We see, from the above observation, that even for a single machine, the pro-

portional sharing coordination mechanism does not achieve anything better than a
solution that is a factor of 2 − 2

n+1 away from the optimum. Since this holds per
machine, it must also hold for Q||

∑
Cj . Therefore, if we want to find a coordination

mechanism that has a price of anarchy better than 2, the upper bound we prove for
SPT, the proportional sharing rule is not a suitable candidate.
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CHAPTER 3

Scheduling jobs with private information

In this chapter, we address the optimal scheduling mechanism design problem for the
single machine scheduling model introduced by Heydenreich et al. [33]. The model
is an abstraction of a simple queueing problem with private data: A number of n
clients are queueing for a service, the service provider needs to compensate all clients
for their waiting time, but waiting costs and service times are private to the clients.
It models economic situations where clients queue for a single scarce resource, e.g.
scheduling aircraft landing, where multiple planes have to be scheduled to land on
one runway [5, 7]. At the same time, the problem is the private information version
of one of the most basic and classical machine scheduling models, namely to minimize
the total weighted completion time of a given number of non-preemptive jobs with
weights wj and processing times pj on a single machine. This problem is close to
trivial from the optimization point of view, as the optimal sequence is to process the
jobs in order of non-increasing ratios wj/pj [66]. Once the data wj and pj is private,
however, the solution is far from trivial, as we will see.

While Heydenreich et al. [33] mainly address the version with single-dimensional
private data, we here focus on the case with two-dimensional private data. Indeed,
starting with the seminal paper by Myerson [49], optimal mechanism design with
single-dimensional private data is pretty well understood, also from an algorithmic
point of view [e.g. 31], while algorithmic results for optimal mechanism design with
multi-dimensional private data have been obtained only recently [e.g. 1, 8]. Our
starting point is the open problem formulated by Heydenreich et al. [33], who ‘leave
it as an open problem to identify (closed formulae for) optimal mechanisms for the
2-d case.’ Here, the ‘2-d case’ refers to the problem of computing a Bayes-Nash
optimal mechanism for the following sequencing problem on a single machine: There
are n jobs with two-dimensional private data, namely a cost per unit time wj and
a processing time pj . Jobs need to be processed sequentially and non-preemptively,
and each job requires a compensation for the disutility of waiting. With given
priors on the private data of jobs, the optimal mechanism seeks to minimize the
total expected payments made to the jobs, while being BNIC. We answer the open
problem formulated by Heydenreich et al. [33], by giving an optimal mechanism
and showing that it can be computed in polynomial time. Our solution is based on
linear programming techniques and results in an optimal randomized mechanism.
In that sense, we do not obtain analytic ‘closed formulae’ for the solution, and our
results can be seen in the tradition of ‘automated mechanism design’, as proposed
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by, among others, Conitzer and Sandholm [13] and Sandholm [64], in that the design
of the mechanism itself is based on (integer) linear programming.

The technical contribution of this chapter is the compactification of an exponen-
tial size linear programming formulation of the mechanism design problem. This
crucial ingredient allows a polynomial time algorithm to compute payments and a
so-called interim schedule by solving a polynomial size linear program.

Finally, again in the flavor of automated mechanism design, we present com-
putational results based on the (integer) linear programming formulations. These
computations have the primary goal to test and validate hypotheses on the struc-
ture of solutions. Our computations, based on randomly generated instances, show
that optimal mechanisms in the two-dimensional setting do not share several of the
nice properties of the solutions to the single-dimensional problem: The scheduling
rules of optimal Bayes-Nash incentive compatible mechanisms are not necessarily
IIA (a desirable property to be defined later), and neither do optimal Bayes-Nash
mechanisms allow an implementation in dominant strategies. This in contrast to the
single-dimensional problem which does have these properties [33, 19].

Closely related to our work is a result by Cai et al. [8]. They describe a general
framework for mechanism design problems for which they show that an FPTAS
exists that finds (near) optimal mechanisms. However the problem described here
does not fit directly into their framework, because the model considered here has
informational externalities1. Still, with some mild adaptations, one can see that the
techniques of Cai et al. [8] can be applied also to the problem studied here and even
imply that an optimal mechanism can be found in polynomial time. However, these
techniques do not lead to an explicit, polynomial size LP model for the optimal
mechanism design problem, which we do provide here.

3.1 Definitions, preliminary & related results

We consider a single machine scheduling problem with n agents, denoted by j ∈ N ,
each owning a job with weight wj and processing time pj . We identify jobs with
agents. The jobs need to be sequenced (processed) non-preemptively on a single
machine, with the interpretation that wj is Job j’s individual cost for waiting one
unit of time, while pj is the time it requires to process Job j. In a schedule that yields
a start time Sj for Job j, the cost for waiting is wjSj . The type of a Job j is the
two-dimensional vector of weight and processing time, denoted tj = (wj , pj). With
tj being public, the total waiting cost is well known to be minimized by sequencing
the jobs in order of non-increasing ratios wj/pj , also known as Smith’s rule [66].

In the setting we consider here, weight and processing time are private to the
agent that owns the job. There is, however, a public belief about this private infor-

1That is, the valuation of an agent for a given solution depends on types of other agents, too. If
we think of the mechanism design problem as the problem to assign n jobs to positions 1, 2, . . . , n,
indeed, the valuation that a job has for a given position k depends on the processing times of the
jobs on positions 1, . . . , k − 1.
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mation, which is2

• the types that Job j might have are Tj = {t1j , . . . , t
mj
j }, and

• the probability of Job j having type tij is ϕj(t
i
j), i = 1 . . . ,mj .

By T = T1× . . .× Tn we denote the type space of all jobs, with t = (t1, . . . , tn) ∈ T .
Define m :=

∑
j∈N mj , and note that m ≥ n. For a type tij ∈ Tj , we let wij and pij

be the corresponding weight and processing time, respectively. We sometimes abuse
notation by identifying i with tij , to avoid excessive notation. Moreover, (tj , t−j)
denotes a type vector where tj is the type of Job j and t−j are the types of all jobs
except j, with t−j ∈ T−j :=

∏
k 6=j Tk, the set of type vectors excluding j. For given

t ∈ T and K ⊆ N , we also define the shorthand notation ϕK(tK) :=
∏
k∈K ϕk(tk)

for the product distribution of the types of jobs in K, particularly ϕ−j(t−j) :=∏
k 6=j ϕk(tk).

We assume, just like Heydenreich et al. [33], that the mechanism designer needs
to compensate the jobs for waiting by a payment πj . We seek to compute and imple-
ment a (direct) mechanism, consisting of a scheduling rule and a payment rule. More
specifically, the mechanism assigns to any type vector t ∈ T a vector S(t) that repre-
sents the start times of all jobs in the sequence selected by the mechanism, together
with a vector of compensation payments π(t), one for every job. In the mechanism
design and auction literature, for obvious reasons, what is a scheduling rule here is
referred to as allocation rule. Clearly, jobs may have an incentive to strategically
misreport their true types in order to receive higher compensation payments. The
optimal mechanism that we seek, however, is one that minimizes the total payments
made to the jobs. Again like Heydenreich et al. [33], we assume that only larger than
the true processing times can be reported by any job, since reporting a processing
time smaller than the true processing time is verifiable while processing a job and
would leave the job uncompleted.

Myerson’s revelation principle [49] makes this problem, like many others [68],
amendable to optimization techniques. We considered Bayes-Nash incentive compat-
ible mechanisms. We introduce ESij and πij as shorthand notation for the expected

start time and the payment for Job j when he reports to be of type tij . Then a
mechanism is BNIC if it fulfills the following, linear constraint

πij − wijESij ≥ πi
′

j − wijESi
′

j for all jobs j and types tij , t
i′

j ∈ Tj .

The expectation ESij is taken over all (truthful) reports of other jobs t−j ∈ T−j .
Then, assuming utilities are quasi-linear, the expected utility for Job j with true
type tij is πij−wijESij for reporting truthfully, while a false report ti

′

j yields expected

utility πi
′

j − wijESi
′

j .

2Note that the discrete type space makes the problem amendable for (I)LP techniques. Indeed,
in the words of Vohra [68], ‘nothing of qualitative significance is lost in moving from a continuous
to a discrete type space’.
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Moreover the mechanism is individually rational, which ensures that the agents
are compensated for their waiting time if they report truthfully,

πij − wijESij ≥ 0 for all jobs j and types tij ∈ Tj .

It is interesting to ask if a scheduling rule (more generally, allocation rule) can
even be implemented in the stronger dominant strategy equilibrium; Manelli and
Vincent [47] indeed show the equivalence of BNIC and DSIC implementations for
the case of standard single unit private value auctions. In a dominant strategy equi-
librium, reporting the true type maximizes the utility of a job not only in expectation
but for any report t−j of the other jobs. The latter obviously implies the former,
but generally not vice versa [26].

In the setting considered here, a mechanism is Bayes-Nash implementable if and
only if the expected start times ESij are monotonically increasing in the reported

weight wij . The same result holds for dominant strategy implementability. Then the

start times, Sj(t
i
j , t−j), need to be monotonically increasing in the reported weight,

wij , for all t−j ∈ T−j . This is a standard result in single-dimensional mechanism
design, see for instance the introductory text by Nisan [53], but it is also true for
the two-dimensional problem considered here [33, 19].

For the single-dimensional mechanism design problem, where only weights wj are
private information and processing times pj are known, the optimal mechanism has
a simple structure: It is Smith’s rule, but with respect to virtual instead of original
weights wj ; see Heydenreich et al. [33] and Duives et al. [19] for details. In this
case the optimal Bayes-Nash incentive compatible mechanism can be computed and
implemented in polynomial time, and it can even be implemented with the same
expected cost in dominant strategies [19].

The problem to find and analyze an optimal mechanism for the two-dimensional
optimal mechanism design problem was left open by Heydenreich et al. [33] and
Duives et al. [19].

3.2 Problem formulations & linear relaxation

Let us start by giving a natural, albeit exponential size ILP formulation for the
mechanism design problem at hand. Recall that Sj(t) denotes the start time of Job
j in the sequence selected by the mechanism for given type vector t. Let us denote
by σ some sequence of the jobs. We use the natural variables

x(σ, t) =

{
1 if for type vector t sequence σ is used ,

0 otherwise .

Let us denote by S(σ, t) the vector of start times of jobs that correspond to type
vector t and sequence σ. Note that the parameters S(σ, t) can be computed directly
from σ and t. Then the formulation reads as follows.
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Linear program 1

min
∑
j∈N

∑
i∈Tj

ϕijπ
i
j (3.1)

πij ≥ wijESij ∀j ∈ J, i ∈ Tj (3.2)

πij ≥ πi
′

j − wij(ESi
′

j − ESij) ∀j ∈ N, i, i′ ∈ Tj , pi
′

j ≥ pij (3.3)

ESij =
∑

t−j∈T−j

ϕ(t−j)
∑
σ

x(σ, (tij , t−j))Sj(σ, (t
i
j , t−j)) ∀j ∈ N, tij ∈ Tj (3.4)

∑
σ

x(σ, t) = 1 ∀t ∈ T (3.5)

x(σ, t) ∈ {0, 1} ∀σ ∈ Σ, t ∈ T . (3.6)

Here we use the shorthand notation ϕij for ϕj(t
i
j) and i ∈ Tj for tij ∈ Tj . Σ

denotes the set of all sequences of the jobs in N . The objective (3.1) is the total
expected payment. Constraints (3.2) and (3.3) are the individual rationality and
incentive compatibility constraints: (3.2) requires the expected payment to at least
match the expected cost of waiting when the type is tij , and (3.3) makes sure that

the expected utility is maximized when reporting truthfully. The values ESij are

also referred to as an interim schedule. Indeed, ESij is the expected start time of
Job j given it has type i. Here, the expectation is over all types of jobs other than
j and equations (3.4) are the feasibility constraints for interim schedules, expressing
the fact that the expected start times in the interim schedule need to comply with
the scheduling rule encoded by x. While the input size of the mechanism design
problem is O(m), this ILP formulation is colossal as the number of variables xσ(t)
equals |T |n! with |T | =

∏
jmj , and therefore is potentially doubly exponential.

Observe that, for a given type vector t, S(σ, t) are start time vectors of the
jobs. These correspond to vertices of the scheduling polytope. Introducing S =
(S1, . . . , Sn) as variables for the start times of jobs, recall from Theorem 1.1 that the
scheduling polytope is defined by

∑
j∈K

pj(t)Sj ≥
1

2

∑
j∈K

pj(t)

2

− 1

2

∑
j∈K

pj(t)
2 ∀K ⊂ N (3.7)

∑
j∈N

pj(t)Sj =
1

2

∑
j∈N

pj(t)

2

− 1

2

∑
j∈N

pj(t)
2
, (3.8)

where we use pj(t) to denote the processing time of Job j in type profile t. Observe
that (3.8) excludes schedules with idle time. The vertices of the scheduling polytope
are exactly all permutation schedules, and hence, any point, S, that satisfies (3.7)
and (3.8) represents feasible expected start times of a randomization over (at most
n) schedules. It is well known that the scheduling polytope is a polymatroid, which
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is easily verified via a variable transform to p(t)S. Both optimization and separation
for the scheduling polytope can be done in time O(n2) [22, 58].

3.2.1 Extended formulation in linear ordering variables

It turns out to be convenient for our purpose to consider an extended formulation
for the scheduling polytope, namely using linear ordering variables dkj ,

dkj(t) =

{
1 if for type vector t we use a schedule where Job k precedes Job j ,

0 otherwise .

In terms of these variables, for any given vector of types t, start times of jobs are
then

Sj(t) =
∑
k∈N

dkj(t)pk(t) .

Using linear ordering variables yields the following, extended formulation of the
optimal mechanism design problem.

Linear program 2

min
∑
j∈N

∑
i∈Tj

ϕijπ
i
j (3.9)

πij ≥ wijESij ∀j ∈ N, i ∈ Tj (3.10)

πij ≥ πi
′

j − wij(ESi
′

j − ESij) ∀j ∈ N, i, i′ ∈ Tj , pi
′

j ≥ pij (3.11)

ESij =
∑

t−j∈T−j

ϕ(t−j)Sj(t
i
j , t−j) ∀j ∈ N, i ∈ Tj (3.12)

Sj(t) =
∑
k∈N

dkj(t)pk(t) ∀j ∈ N, t ∈ T (3.13)

djj(t) = 0 ∀j ∈ N, t ∈ T (3.14)

dkj(t) + djk(t) = 1 ∀j, k ∈ N, j 6= k, t ∈ T (3.15)

djk(t) + dkl(t) ≤ 1 + djl(t) ∀j, k, l ∈ N, t ∈ T (3.16)

djk(t) ∈ {0, 1} ∀j, k ∈ N, t ∈ T . (3.17)

Observe that, in contrast to the previous formulation, the number of variables
djk(t) now equals n2 · |T |. However this formulation is in general exponential as well,
since the type space T can be exponential in m, the total number of types of all jobs.

Vertices of the scheduling polytope are the solutions S(t) of (3.13)-(3.17), and
moreover the following lemma holds; see for instance Queyranne and Schulz [59,
Thm. 4.1]

Lemma 3.1. A vector S(t) ∈ R is contained in the scheduling polytope if and only
if there are linear ordering variables d that satisfy (3.13), (3.15) and

dkj(t) ∈ [0, 1] ∀j, k ∈ N, t ∈ T . (3.18)
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Proof. Since any vertex of the scheduling polytope can be described by linear order-
ing variables that satisfy (3.15), (3.13) and (3.17), it can therefore also be described
by linear ordering variables that satisfy (3.13), (3.15) and (3.18). Since any point
S(t) in the scheduling polytope is, by definition, a convex combination of such ver-
tices, it can also be described by linear ordering variables that satisfy (3.15), (3.13)
and (3.18).

Now let S(t) be described by linear ordering variables that satisfy (3.15), (3.13)
and (3.18). Then for any K ⊆ N

∑
j∈K

Sj(t)pj(t) =
∑
j∈K

 ∑
k∈N\{j}

dkj(t)pk(t)

 pj(t)

≥
∑
j∈K

 ∑
k∈K\{j}

dkj(t)pk(t)

 pj(t)

=
∑
j∈K

∑
k∈K
k<j

dkj(t)pk(t)pj(t) + djk(t)pj(t)pk(t)

=
∑
j∈K

∑
k∈K
k<j

pk(t)pj(t)

=
1

2

∑
j∈K

pj(t)

2

− 1

2

∑
j∈K

pj(t)
2 ,

where the second equality is due to (3.15). So S(t) satisfies (3.7) and for K = N the
inequality is tight, so S(t) also satisfies (3.8).

So, via (3.13), the scheduling polytope is an affine image of the linear ordering
polytope. Lemma 3.1 is crucial for what follows, as we can continue to work with
the relaxation, (3.14)-(3.15) and (3.18), instead of (3.14)-(3.17).

3.2.2 Relaxation & compactification

A linear relaxation of the optimal mechanism design problem (3.9)-(3.17) is obtained
by dropping the last two sets of constraints (3.16) and (3.17) and adding (3.18).
By moving from the ILP formulation to its LP relaxation, we in fact move from
deterministic scheduling rules to randomized ones. Actually, the proof of Lemma 3.1
never uses that the vertices of the scheduling polytope satisfy the triangle inequality,
(3.16). This shows that the triangle inequality is redundant and that (3.13)-(3.15)
and (3.18) exactly describe the scheduling polytope.

In what follows we also combine (3.12) and (3.13) into just one constraint, and
(3.16) and (3.17) are omitted. This gives us the following formulation for the linear
relaxation.
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Linear program 3

min
∑
j∈N

∑
i∈Tj

ϕijπ
i
j (3.19)

πij ≥ wijESij ∀j ∈ N, i ∈ Tj (3.20)

πij ≥ πi
′

j − wij(ESi
′

j − ESij) ∀j ∈ N, i, i′ ∈ Tj (3.21)

ESij =
∑

t−j∈T−j

∑
k∈N

ϕ−j(t−j)dkj(t
i
j , t−j)pk(t−j) ∀j ∈ N, i ∈ Tj (3.22)

djj(t) = 0 ∀j ∈ N, t ∈ T (3.23)

dkj(t) + djk(t) = 1 ∀j, k ∈ N, k 6= j, t ∈ T (3.24)

dkj(t) ∈ [0, 1] ∀j, k ∈ N, t ∈ T . (3.25)

We now focus on the projection to variables ESij , that is, vectors ES ∈ Rm
satisfying (3.22)-(3.25). These are interim schedules in the linear relaxation. Let us
refer to this projection as the relaxed interim scheduling polytope. Notice that, even
though it is a linear relaxation, (3.22)-(3.25) is still an exponential size formulation
in general, as it depends on the size of the type space T . The crucial insight is that,
in the linear relaxation, this exponential size formulation is actually not necessary.
Instead of using dkj(t) where t ∈ T , we propose an LP compactification by restricting
to variables

dkj(tk, tj) ,

where tk and tj are the types of jobs k and j, respectively. This reduces the number
of dkj-variables to O(m2), yielding a polynomial size formulation. Doing so, we
obtain

ESij =
∑
k∈N

∑
tk∈Tk

ϕ(tk)dkj(t
i
j , tk)pk(tk) ∀j ∈ N, tij ∈ Tj (3.26)

djj(tj , tj) = 0 ∀j ∈ N, tj ∈ Tj (3.27)

dkj(tk, tj) + djk(tj , tk) = 1 ∀j, k ∈ N, k 6= j, tj ∈ Tj , tk ∈ Tk (3.28)

dkj(tk, tj) ∈ [0, 1] ∀j, k ∈ N, tj ∈ Tj , tk ∈ Tk . (3.29)

The following lemma is the core technical insight of the main result in this chapter.

Lemma 3.2. The relaxed interim scheduling polytope defined by (3.22)-(3.25) can
be equivalently described by (3.26)-(3.29).

Proof. Let P be the projection of (3.22)-(3.25) to variables ESij , and P ′ be the

projection of (3.26)-(3.29) to variables ESij . It is obvious that if ES ∈ P ′, then

ES ∈ P , simply by letting dkj(t) = d̂kj(tk, tj), for all t 3 tk, tj . So all we need to
show is that, if ES ∈ P , then ES ∈ P ′. Let ES ∈ P with corresponding dkj(t).
Now define

d̂kj(tk, tj) =
∑
t3tk,tj

ϕ(t)

ϕk(tk)ϕj(tj)
dkj(t) , (3.30)
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as the weighted average of the values dkj(t) for those type vectors in which jobs k
and j have type tk and tj respectively. Recall that ϕ(t) = ϕ1(t1) · . . . ·ϕn(tn). Since
the probability distributions of all jobs are independent, we have

ϕ(t)

ϕk(tk)ϕj(tj)
= P(t|tk, tj) ,

the conditional probability of type vector t occurring, given that jobs k and j have
type tk and tj . So (3.30) describes a convex combination of the dkj(t) variables.

Thus, the d̂kj(tk, tj) variables satisfy (3.27)-(3.29). Moreover, we have for all j ∈ N
and i ∈ Tj ,

ESij =
∑

t−j∈T−j

∑
k∈N

ϕ(t−j)dkj(t
i
j , t−j)pk(t−j)

=
∑
k∈N

∑
t3tij

ϕ(t)

ϕ(tij)
dkj(t)pk(t)

=
∑
k∈N

∑
tk∈Tk

ϕ(tk)
∑
t3tk,tij

ϕ(t)

ϕ(tij)ϕ(tk)
dkj(t)pk(tk)

=
∑
k∈N

∑
tk∈Tk

ϕ(tk)d̂kj(tk, tj)pk(tk) ,

which is exactly the RHS of (3.26).

We conclude with the following theorem.

Theorem 3.3. Computing an optimal interim schedule together with optimal pay-
ments for the mechanism design problem can be done in time polynomial in the input
size of the problem.

Proof. The input size of the problem is Θ(m). The linear formulation (3.19)-(3.21)
together with (3.26)-(3.29) has O(m2) variables and O(m2) constraints. Hence, this
linear program can be solved in time polynomial in the input size.

Now that we can efficiently compute an interim scheduled and corresponding
optimal payments, two issues remain: The first is the interpretation of Theorem 3.3,
because it is based on a relaxation and has a reduced number of variables. The
second is the actual implementation of the optimal mechanism: We have to link the
computed solution of the LP relaxation, specifically the computed interim schedule
ES, to a (randomized) schedule S(t) for any given type profile t ∈ T . The first issue
is discussed next, the second is treated separately in Section 3.3.

3.2.3 Discussion of the result in Theorem 3.3

We consider a true relaxation of the linear ordering polytope by dropping triangle
and integrality constraints, yet the affine image of the variables dkj(t), respectively
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d̂kj(tk, tj), via (3.13) still yields a feasible point in the scheduling polytope. This
allows us to interpret the solution as a (randomized) schedule; this is discussed in the
next section. Also, we have drastically reduced the number of variables. It seems
that thereby we are reducing the (number of) feasible mechanisms, because the

variables d̂kj(tk, tj) only depend on the types of jobs k and j, while dkj(t) depends
on the whole type vector t. For deterministic mechanisms, this is also known as the
IIA-property [33, 19].

Definition 3.1 (iia). A deterministic scheduling rule is independent of irrelevant
alternatives, or IIA, if the relative order of two jobs does not depend on anything
but the types of those two jobs, that is, dkj(t) = d̂kj(tk, tj), for all t 3 tk, tj . We call
a mechanism for which the scheduling rule is IIA, an IIA-mechanism.

Lemma 3.2 shows that the reduction of variables is in fact no loss of generality
for the linear relaxation. Interestingly, it is a loss of generality for the linear or-
dering polytope itself, respectively for the deterministic optimal mechanism design
problem (3.9)-(3.17): Duives et al. [19] give an instance that shows the existence of
an optimality gap in general. That is, there exist instances where the optimal IIA
mechanism has higher total expected cost than the optimal mechanism; see also The-
orem 3.4 below. With this in mind, a possible interpretation of Lemma 3.2 would be
that the restriction to IIA-mechanisms is no loss of generality once randomization
is allowed. But this interpretation is problematic too, as the variables dkj in the
relaxation cannot, in general, be interpreted as the probability of Job k preceding
Job j: By definition of the relaxation, neither the vector of variables d̂kj(tk, tj) nor
dkj(t) do necessarily lie in the linear ordering polytope; see e.g. Fishburn [23]. In
the next section we discuss how to deal with this problem.

3.3 Implementation of the optimal mechanism

Recall from the previous discussion that the fractional solution in variables dkj as
suggested by the LP relaxation cannot in general be decomposed into linear orders,
as it may lie outside the linear ordering polytope. Still, by taking the detour via the
scheduling polytope, we can fix this problem.

Observe that, for a given solution of the LP relaxation and any fixed type vector
t = (t1, . . . , tn), we have values d̂jk(tj , tk), for each pair of jobs j and k. From these
we can compute a corresponding vector of start times S(t) by

Sj(t) =
∑
k∈N

dkj(tj , tk)pk(tk) for all j .

Now S(t) is a point in the scheduling polytope defined in (3.7) and (3.8). The di-
mension of the scheduling polytope for n jobs is n − 1. Caratheodory’s Theorem
says that any point in a d-dimensional polytope can be expressed as a convex com-
bination of at most d+ 1 of the vertices of that polytope [9]. Therefore S(t) can be
expressed as the convex combination of at most n vertices of the scheduling poly-
tope, that is, deterministic schedules. The results from Chapter 5 show that there
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are fast algorithms to find such a convex combination of vertices for any point in the
scheduling polytope. Combining these with the outcomes from the LP results in a
method that, for any type vector t ∈ T , finds a lottery over pure schedules and a
payment vector, which combined are a Bayes-Nash incentive compatible mechanism
for the two-dimensional scheduling mechanism design problem.

3.4 Computational results

We have implemented all integer linear programming models discussed in this chap-
ter. Here we describe the results obtained with these experiments.

We compute both optimal mechanisms and optimal mechanisms that are in ad-
dition IIA. To this end, for each pair of type vectors t, t′, with ti = t′i and tj = t′j ,
and each pair of permutations σ, σ′ that do not agree on the order of i and j, we
add the following constraint to (3.1)-(3.6):

x(σ, t) + x(σ′, t′) ≤ 1 . (3.31)

This constraint ensures that if the types of i and j stays the same, then their relative
order stays the same. To ensure the IIA condition in the extended linear ordering
formulation, we simply reduce the number of variables by letting δij(t) only depend
on the types of i and j, i.e., by using variables δij(ti, tj) instead.

As mentioned, the most straightforward ILP formulation (3.1)-(3.6) for the de-
terministic mechanism design problem is colossal, which is confirmed by large com-
putation times. In comparison, the linear ordering formulation (3.9)-(3.17), even
though exponential in size as well, yields a substantial improvement in computation
times even for small scale instances. In particular, the latter allows a drastic re-
duction of the number of variables and constraints for computing IIA-mechanisms,
while in the former the number of variables remains the same and the number of
constraints actually increases drastically. Tables 3.1 to 3.4 show the computational
results for the different formulations for some small scale instances3. We see that the
formulation in natural variables (3.1)-(3.6) is clearly outperformed by the extended
formulation in linear ordering variables, (3.9)-(3.17). Especially when the number
of jobs and/or types per job increases. The difference in performance is obvious. In
particular, for computing mechanisms that are IIA, the advantage of the extended
formulation in linear ordering variables is overwhelming.

The main purpose of implementing the integer linear programming models was,
however, not to verify what was to be expected. It was to verify certain conjectures
about the relations between different classes of mechanisms through testing randomly
generated instances. The following two of these instances lead to some new insights.

Instance 3.1. Four jobs with the following type spaces and corresponding proba-
bilities:

3Computation times where obtained with Gurobi 5.6.3 64-bit in Python 3.2.5 running on an
Intel(R) Core(TM)2 Duo E8400 3.00 GHz computer with Windows 7 64-bit operating system with
4.00 GB of memory.
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Types Setting Formulation # Vars # Constrs Comp. time (ms)
3-3-3 BN (3.1)-(3.6) 180 69 5.70
3-3-3 BN-IIA (3.1)-(3.6),(3.31) 180 1527 22.20
3-3-3 BN (3.9)-(3.17) 99 96 3.13
3-3-3 BN-IIA (3.9)-(3.17) 45 96 1.87

Table 3.1: Computational results for 30 randomly constructed instances with three
jobs, each with three types.

Types Setting Formulation # Vars # Constrs Comp. time (ms)
3-3-3-3 BN (3.1)-(3.6) 1968 138 66.67
3-3-3-3 BN-IIA (3.1)-(3.6),(3.31) 1968 560010 75900.03
3-3-3-3 BN (3.9)-(3.17) 510 705 15.50
3-3-3-3 BN-IIA (3.9)-(3.17) 78 273 5.10

Table 3.2: Computational results for 30 randomly constructed instances with four
jobs, each with three types.

Job 1 w = 6 w = 7 w = 10
p = 2 0.3312 0.3456 0.0432
p = 7 0.1288 0.1344 0.0168

,
Job 2 w = 5 w = 8
p = 4 0.0344 0.8256
p = 8 0.0056 0.1344

,

Job 3 w = 3 w = 10
p = 8 0.3825 0.1275
p = 10 0.3675 0.1225

,
Job 4 w = 3 w = 8
p = 1 0.2583 0.3717
p = 6 0.1517 0.2183

.

Instance 3.2. Three jobs with the following type spaces and corresponding proba-
bilities:

Job 1 w = 2
p = 1 1

,
Job 2 w = 9
p = 8 1

,
Job 3 w = 1 w = 3 w = 5
p = 5 0.24 0.02 0.16
p = 7 0.24 0.24 0.10

.

Note that Instance 3.2 is an instance that was found by Duives et al. [19]. They
use it to prove that optimal Bayes-Nash mechanisms do not satisfy the IIA condi-
tion. As a matter of fact, Instance 3.1 shows that also in the dominant strategy
setting, optimal mechanisms do not satisfy the IIA condition. Another commonly
asked question is if optimal Bayes-Nash mechanisms can be implemented in domi-
nant strategies. For scheduling in the single-dimensional setting, this is indeed the
case [19]. Our computations on Instance 3.1 show that, for the two-dimensional
setting, the same does not hold. Finally, Instance 3.2 shows that the resulting ran-
domized mechanism from the LP formulation in Section 3.2 can not be implemented
deterministically. We therefore obtain the following theorems.
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Types Setting Formulation # Vars # Constrs Comp. time (ms)
6-6-6 BN (3.1)-(3.6) 1332 327 43.57
6-6-6 BN-IIA (3.1)-(3.6),(3.31) 1332 29487 710.37
6-6-6 BN (3.9)-(3.17) 684 543 22.97
6-6-6 BN-IIA (3.9)-(3.17) 144 543 9.57

Table 3.3: Computational results for 30 randomly constructed instances with three
jobs, each with six types.

Types Setting Formulation # Vars # Constrs Comp. time (ms)
9-9-9 BN (3.1)-(3.6) 4428 945 404.65
9-9-9 BN-IIA (3.1)-(3.6),(3.31) 4428 158409 22506.73
9-9-9 BN (3.9)-(3.17) 2241 1674 257.91
9-9-9 BN-IIA (3.9)-(3.17) 297 1674 152.41

Table 3.4: Computational results for 30 randomly constructed instances with three
jobs, each with nine types.

Theorem 3.4. Optimal deterministic mechanisms for both Bayes-Nash and domi-
nant strategy implementations, in general do not satisfy the IIA condition.

Proof. Duives et al. [19] use Instance 3.2 to prove this theorem for Bayes-Nash
mechanisms4. Instance 3.1 shows the same: it has a Bayes-Nash optimal IIA mech-
anism with objective value 128.5697 and non-IIA optimal Bayes-Nash mechanism
with objective value 128.5195. Moreover, computations for Instance 3.1 also show
that dominant strategy optimal mechanisms yield an objective value 128.6946 for
the IIA mechanism, while for the non-IIA mechanism, we obtain an objective value
of 128.6151.

Theorem 3.5. The optimal deterministic Bayes-Nash mechanism is generally not
implementable in dominant strategies.

Proof. Instance 3.1 has optimal deterministic Bayes-Nash mechanism with objective
value 128.5195, while the optimal deterministic dominant strategy mechanism has
objective value 128.6151.

Theorem 3.6. Randomized Bayes-Nash mechanisms perform better than determin-
istic Bayes-Nash mechanisms in terms of total optimal payment.

Proof. Instance 3.2 has a deterministic Bayes-Nash optimal mechanism with objec-
tive value 45.0, while the randomized Bayes-Nash optimal mechanism has objective
value 44.74625.

4Note that the example given in Heydenreich et al. [33] to prove the same theorem was flawed,
but that problem has been fixed in [19].
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3.4.1 The IIA condition and the constraint matrix

When we apply our compactification to the deterministic problem, i.e. the integer
program, this results in an integer program that finds the optimal IIA deterministic
mechanism. While for the relaxed problem this is without loss of generality, the
deterministic problem in general does not have an optimal solution that satisfies
the IIA property. One of the possible explanations for this is the structure of the
constraint matrix for both problems. Although, we refer to the non-deterministic
problem as the LP-relaxation of the IP, there is more going on than only relaxing the
integer variables. As mentioned in Section 3.2.2, the triangle inequality, (3.16), is
redundant once we look at the LP-relaxation. Therefore, it suffices to use inequali-
ties (3.22)-(3.25). These constraints result in a constraint matrix with a very specific
structure, namely the matrix is block diagonal. Furthermore, variables djk(t) only
play a roll in the expected start time of agents j and k, but no other agent. Thus,
these decision variables need only depend on the types of those two agents and the
compactification can be done without affecting the outcome. While this all works
for the linear relaxation, adding the triangle inequality which is necessary for deter-
ministic mechanisms, breaks this structure. Hence, for deterministic mechanisms,
the decision variables need to be dependent on the whole type vector t.



CHAPTER 4

Heuristics for deterministic mechanism

design

Chapter 3 shows that the two-dimensional scheduling mechanism design problem can
be solved in polynomial time for randomized mechanisms by using an LP formulation.
Still, it is unsatisfying that this does not get us much closer toward deterministic
mechanisms. In this chapter we provide computationally efficient heuristics that
find mechanisms that are both deterministic and simple to interpret. The latter is
achieved by enforcing the, so-called, IIA property on the mechanism. This ensures
that the allocation rule of the mechanism can be viewed as a priority list of the types
of all the jobs. On the one hand, this makes sense because the relative order of two
jobs in the schedule only depends on their respective types. On the other hand, we
show that the IIA property sets the problem in the class NP, which is unknown to
be true for the general problem.

While for many problems it is feasible to look at rounding procedures to transform
randomized solutions into deterministic ones, this does not seem feasible for the two-
dimensional scheduling mechanism design problem. For example, if we would round
the linear ordering variables, from LP formulation 3, to the nearest binary value, in
general, this would not lead to deterministic schedules, since the outcome may not
satisfy the triangle inequality.

In this chapter we consider the same model as in Chapter 3. A set N = {1, . . . , n}
of jobs have to be scheduled on a single machine. Each Job j has a private type tj
from a set of possible types Tj . Each type consists of a weight wj and a processing
time pj . Over the set of types Tj a probability distribution, ϕj : Tj → [0, 1] is
publicly known. A mechanism consists of a pair (f, π), where f is the scheduling
rule and π is a vector of payments, πj(tj) for each Job j and each type tj ∈ Tj . Our
objective is to find a deterministic mechanism that is BNIC and IR, while minimizing
the expected total payments made to the jobs.

In general, deterministic mechanisms may need an exponential size description,
since for every type vector a schedule must be determined. Hence, it is not clear if
the problem is contained in NP. Also, this makes local search heuristics very hard
to apply, since changes in the schedule for one type vector influence the outcome very
little. In this chapter we consider IIA mechanisms to tackle these problems. We show
that IIA mechanisms have a polynomial size representation, that additionally makes
the mechanism easy to interpret. It follows that the deterministic IIA scheduling
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mechanism design problem is contained in NP.

In the single-dimensional problem there is always an optimal solution that satis-
fies the IIA condition [19]. However, for the two-dimensional problem, we know that
the optimal solution, in general, does not satisfy this condition.

We propose a representation of IIA mechanisms as a priority list of all types.
This priority list is easy to interpret and makes local search methods viable. With
respect to this priority list, we propose two different search neighborhoods to use in
the local search heuristics. We show with computational experiments, that one of
the neighborhoods allows the local search heuristics to find good solutions. However,
this requires a relatively long computation time. Hence, the computational results
show that the local search heuristics are not well-suited for larger problem instances.
Therefore, we developed several experimental heuristics based on the solution con-
cept for the single-dimensional mechanism design problem. The experiments show
that these heuristics find good deterministic solutions, in much less time even than
it takes commercial software to solve the LP relaxation from Chapter 3.

As far a we are aware, there has not been much work toward heuristics for optimal
mechanism design. In this chapter we suggest some techniques that seem promising
for problems of which the allocation can be constructed from a simple ordering of
the agents. These include scheduling problems, and single item auctions and many
multi item auctions could be modeled in such a way as well.

4.1 Preliminary results

Duives et al. [19] treat mechanism design in a single machine scheduling setting where
the jobs have private weights but processing times are public knowledge. They show
that some of the results are transferable to the problem we consider, while some are
not. In this section we recap some of the results from Duives et al. [19] that we will
use in the rest of the chapter.

The main result from [19] is that, like the auction setting treated by Myerson
[49], the single-dimensional scheduling mechanism design problem can be solved by
means of solving the standard optimization problem on so-called virtual weights.
These virtual weights can be computed from the type graph of each of the jobs.

The type graph of Player j can be used as a tool to compute minimal payments
given an implementable allocation rule and can be constructed as follows. For Player
j, the type graph is a complete directed graph, whose nodes consist of all tj ∈ Tj .
Given an allocation rule f , from which we compute for each type tj the expected
start time ESj(f, tj), and two types tj 6= t′j , let

l(f, tj , t
′
j) = wj(tj)(ESj(f, t

′
j)− ESj(f, tj))

be the length of the arc (tj , t
′
j). These lengths represent the gain in expected valu-

ation for Player j if he truthfully reports type tj instead of lying type t′j . The type
graph has one more dummy node, which has incoming arcs from all other nodes and
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w2 dummyw2

−w1ES(f, w1)

w1(ES(f, w2)− ES(f, w1))

w2(ES(f, w1)− ES(f, w2))

−w2ES(f, w2)

Figure 4.1: Type graph for a job with two types, (w1, p) and (w2, p).

no outgoing arcs. The length of the incoming arcs is

l(f, tj , ‘dummy’) = −wj(tj)ESj(f, tj) .

Figure 4.1 shows the type graph for a job with two types. Given these arc lengths,
the BNIC constraints, (1.14), can be rewritten as

Eπj(f, t
′
j) ≥ Eπj(f, tj) + wj(tj)ESj(f, t

′
j)− wj(tj)ESj(f, tj)

= Eπj(f, tj) + l(f, tj , t
′
j) ,

from which we see that Eπj(f, ·) is a node potential in the type graph of Job j. This
implies that the allocation rule f is Bayes-Nash implementable if and only if none
of the resulting type graphs has a negative cycle. Such an allocation rule is said
to be cyclically monotone [10]. For mechanism design problems where the agents
have quasi-linear utilities, am allocation rule is cyclically monotone if and only if it
is 2-cycle monotone, that is, the type graphs have no negative two-cycles [62].

We say an allocation rule, f , for the single-dimensional scheduling mechanism
design problem, satisfies monotonicity if for every Job j and every pair of types
tj , t
′
j ∈ Tj , such that wj(tj) > wj(t

′
j), we have ESj(f, tj) ≤ ESj(f, t′j).

Theorem 4.1 (Duives et al. [19]). An allocation rule f for the single-dimensional
scheduling mechanism design problem is Bayes-Nash implementable if and only if it
satisfies monotonicity.

Proof. An allocation rule f for the scheduling mechanism design problem is 2-cycle
monotone if the following is non-negative for all tj and t′j ,

l(f, tj , t
′
j) + l(f, t′j , tj) = wj(tj)(ESj(f, t

′
j)− ESj(f, tj))

+ wj(t
′
j)(ESj(f, tj)− ESj(f, t′j))

= (wj(tj)− wj(t′j))(ESj(f, t′j)− ESj(f, tj)) . (4.1)

Obviously, this is true if and only if f satisfies monotonicity.
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By normalizing the node potential of the dummy node to 0, the resulting min-
imal node potentials, Eπj(f, ·), are exactly the minimum payments for any given
allocation rule, f . The minimum payments for a type tj can then be computed by
finding the shortest path from tj to the dummy node in the type graph of j. Let
dist(f, tj ,dummy) denote the length of this shortest path. Then, for allocation rule
f , the minimum expected payment, Eπj(f, tj), for tj , such that (f,Eπ) is BNIC and
IR is

Eπj(f, tj) = −dist(f, tj ,dummy) .

This is a well-known result and also holds for the two-dimensional case we treat
in this chapter [49, 62]. For the single-dimensional case let Tj = {t1j , . . . , t

τj
j } and

|Tj | = τj , such that w1
j < w2

j < . . . < w
τj
j , where wij = wj(t

i
j) as shorthand notation.

Then for any monotone allocation rule f and for all j ∈ N and tij , t
i′

j ∈ Tj , i+ 1 < i′

l(f, tij , t
i′

j ) = wij(ESj(f, t
i′

j )− ESj(f, tij))

= wij(ESj(f, t
i′

j )− ESj(f, ti+1
j )) + wij(ESj(f, t

i+1
j )− ESj(f, tij))

≤ wij(ESj(f, ti
′

j )− ESj(f, ti+1
j )) + wi+1

j (ESj(f, t
i+1
j )− ESj(f, tij))

= l(f, tij , t
i+1
j ) + l(f, ti+1

j , ti
′

j ) ,

since ESj(f, t
i+1
j )−ESj(f, tij) ≤ 0 from monotonicity of f . Thus, for any Bayes-Nash

implementable allocation rule, f , and for all j ∈ N and t+ ji ∈ Tj ,

dist(f, tij ,dummy) = l(f, tij , t
i+1
j ) + distf (ti+1

j ,dummy) . (4.2)

This shows that, for any Bayes-Nash implementable allocation rule f , when com-
puting the shortest paths, it suffices to consider the reduced type graph, where only
arcs between two subsequent types exist. Recursing on (4.2) yields

dist(f, tij ,dummy) = l(f, tij , t
i+1
j ) + . . .+ l(f, t

τj
j ,dummy)

=

τj−1∑
k=i

(
wkj (ESj(f, t

k+1
j )− ESj(f, tkj ))

)
− wτjj ESj(f, t

τj
j )

= −wijESj(f, tij) +

τj∑
k=i+1

(wk−1
j − wkj )ESj(f, t

k
j ) .

From this we see that we can write the objective function, minimizing total payments,
as ∑

j∈N

∑
tj∈Tj

Eπj(f, tj) =
∑
j∈N

τj∑
i=1

ϕj(t
i
j)w

i
j +

i−1∑
k=1

ϕj(t
k
j )(wi−1

j − wij)ESj(f, tij)

=
∑
j∈N

τj∑
i=1

ϕj(t
i
j)w

i
jESj(f, t

i
j) , (4.3)
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where wij are called the virtual weights, with w1
j = w1

j and

wij = wij +

∑i−1
k=1 ϕj(t

k
j )

ϕij
(wi−1

j − wij) for all i = 2, . . . , τj . (4.4)

It follows that Smith’s rule, with respect to these virtual weights, scheduling
the jobs in non-increasing order of wj(tj)/pj , minimizes the total expected pay-
ments, (4.3). Therefore, as long as the resulting allocation rule satisfies monotonic-
ity, Smith’s rule with respect to the virtual weights is also the optimal allocation
rule. Let Fmon denote the space of monotone allocations. If Smith’s rule, with re-
spect to the virtual weights, does not satisfy monotonicity, it follows that for the
optimization problem

min
f∈Fmon

∑
j∈N

τj∑
i=1

ϕj(t
i
j)w

i
jESj(f, t

i
j) ,

some of the monotonicity constraints, ESj(f, t
1
j ) ≤ . . . ≤ ESj(f, t

τj
j ), are binding.

These must be those for which ESj(f, t
i
j) < ESj(f, t

i+1
j ), when scheduled according

Smith’s rule, with respect to the virtual weights. In this case, the optimal allocation
rule can still be described in the same way, scheduling the jobs in non-increasing
order of wj(tj)/pj , after a procedure known as ironing. This is explained next.

Definition 4.1 (Ironing). Let a single-dimensional scheduling mechanism design
problem and virtual weights as defined by (4.4) be given. Let wij < wi+1

j for all jobs
j and types i. For Job j let i be the largest index such that

wij < wi−1
j . (4.5)

For this pair i, i− 1 let the ironed virtual weight be

wi,i−1
j =

ϕj(w
i
j)w

i
j + ϕj(w

i−1
j )wi−1

j

ϕj(wij) + ϕj(w
i−1
j )

,

for both i and i− 1. Repeat this process until no index satisfies (4.5).

Theorem 4.2. For the single-dimensional scheduling mechanism design problem,
scheduling the jobs in order of non-increasing ratio of ironed virtual weights over
processing time is the optimal allocation rule.

Proof. We know that scheduling the jobs in non-increasing ratio of virtual weights
over processing time minimizes (4.3). However, if the outcome does not satisfy
monotonicity, then for some i we have, ESij > ESi+1

j , which violates monotonicity.

Therefore, we minimize (4.3) with ESij ≤ ESi+1
j as an extra constraint, which we

know will be a binding constraint. Therefore, the optimal solution must satisfy
ESij = ESi+1

j . Now, since types i and i + 1 are treated equally by the allocation



56 4. Heuristics for deterministic mechanism design

rule, we can treat them as a single type, i′, for which the job can always report the
higher weight, wi+1

j . A simple computation then yields that the virtual weight of
such a type is

wi
′

j = wi+1
j + (wi+1

j − wi−1
j )

∑i−1
k=1 ϕj(t

k
j )

ϕij + ϕi+1
j

= wi+1
j +

(wij − w
i+1
j )ϕij

ϕij + ϕi+1
j

+
(wi+1

j − wij)(ϕij +
∑i−1
k=1 ϕj(t

k
j )) + (wij − w

i−1
j )

∑i−1
k=1 ϕj(t

k
j )

ϕij + ϕi+1
j

=
ϕi+1
j wi+1

j

ϕij + ϕi+1
j

+
ϕijw

i
j

ϕij + ϕi+1
j

+
(wi+1

j − wij)(
∑i
k=1 ϕj(t

k
j )) + (wij − w

i−1
j )

∑i−1
k=1 ϕj(t

k
j )

ϕij + ϕi+1
j

=
ϕi+1
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which is exactly the ironed weight for types i and i + 1. We can repeat this until
no subset satisfies (4.5). Note that, if this is the case, the allocation rule, that
schedules all jobs in non-decreasing order of virtual weight over processing time,
must satisfy monotonicity. Finally, if (4.5) holds for some subset of types, while
the corresponding allocation rule does satisfy monotonicity then the expected start
times for the whole subset of types must be equal. In that case, applying ironing
can not change the allocation rule, as both the highest and the lowest virtual weight
in that subset result in the same expected start time. Thus, the average must also
result in that expected start time.

For the two-dimensional scheduling mechanism design problem we can still use
the same graph interpretation of BNIC. The type graph can be constructed in the
same way and we can compute the minimum payments in the same way from the
shortest paths lengths in this type graph. Also, Duives et al. [19] show that the type
graph can be reduced, like in Figure 4.2. In this graph, though, there are still several
possible shortest paths to the dummy node, and not one of them is dominant in the
sense that it is always a shortest path. Because of this, directly applying the virtual
weights method from the single-dimensional case is doomed to fail.

In the remainder of this chapter we use generalized versions of the “virtual weights
method” from the single-dimensional case in two ways. The first is to apply the
method on a processing time by processing time basis, ignoring all types with other
processing times. We refer to this as 1D virtual weights. The second method, which
we refer to as computing virtual weights with respect to some shortest paths, is the
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Figure 4.2: Generic reduced type graph for two-dimensional types.
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following. Given shortest paths, Pj , compute virtual weights for all types as follows

wij = wij +

∑
k:i∈Pk ϕ

k
j

ϕij
(w

i′(Pk)
j − wij) ,

here i ∈ Pk means that type i is in the shortest path of type k and i′(Pk) denotes
the predecessor of i in that path. In Figure 4.3 this idea is visualized. Note that this
is indeed a generalization of the virtual weights for the single-dimensional problem.

The generalized virtual weight methods for the two-dimensional problem are
used in Section 4.3 and Section 4.4. The “1D virtual weights”-method is used as
a base solution for local search heuristics and the “virtual weights with respect to
some shortest paths”-method is used for a heuristic that iteratively improves an
incumbent solution.
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4.2 IIA mechanisms

For the two-dimensional scheduling mechanism design problem, for deterministic
non-IIA mechanisms it is not clear if, given a scheduling rule, the expected start
time for Job j and type tj , can be computed in polynomial time. Therefore, we do
not know if the decision problem, asking if there exists a mechanism with expected
total payment no more than Π, for some Π ∈ R+, is contained in NP. Consider
the expected start time, ESij , of Job j in type tij . The fact that the mechanism is
not IIA, exactly expresses that the relative order of any two jobs may depend on
the types of other jobs. Hence, computing the expected start time for a Job j in
one type i, ESij , may require the consideration of a number of type vectors that is
exponential in the number of jobs.

Unlike general deterministic mechanisms, IIA mechanisms can be succinctly rep-
resented by a priority list of all the types of all jobs. This priority list induces a
linear ordering of the jobs based on the type they report. A job can easily check for
each of it’s own types the expected start time and for any type of the other jobs if
it would by scheduled before or after.

Example 4.1. Consider an allocation rule for two jobs represented by the priority
list, (t11, t

2
1, t

1
2, t

2
2, t

3
1), where tij denotes the i-th type of Job j. In this case Job 1 is

scheduled before Job 2 except when it reports type t31. The expected start time of
Job 2 is, independent from its reported type, ϕ1(t11)p(t11) + ϕ1(t21)p(t21).

This representation is actually identical to the IIA formulation in linear ordering
variables, as mentioned in Section 3.4.

Given any IIA mechanism, let its linear ordering be given by linear ordering
variables, dkj(tk, tj), such that

dkj(tk, tj) =

{
1 if Job k, with tk, is scheduled before Job j, with tj

0 otherwise
.

These linear ordering variables can easily be computed from a priority list, by simply
checking which type, tk or tj , occurs first in that list. The linear ordering variables,
computed like this, satisfy

djj(tj , tj) = 0 ∀j ∈ N
dkj(tk, tj) + djk(tj , tk) = 1 ∀j, k ∈ N, k 6= j

dkj(tk, tj) + dj`(tj , t`) ≤ 1 + dk`(tk, t`) ∀j, k, ` ∈ N .

Now, it is easy to compute the expected start time for any type of any job,

ESij =
∑
k∈N

∑
tk∈Tk

ϕk(tk)dkj(tk, t
i
j)pk(tk) .

To ensure that a linear ordering corresponds to a BNIC allocation rule, the
resulting rule has to satisfy monotonicity. In the priority list this translates to the
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simple condition that for each job all types with the same processing time have to
appear in descending order of their weights. It is easy to check that this condition is
sufficient. It is not necessary, since two types of the same job, that appear directly
after each other, have the same expected start time, independent of their relative
order. Yet, it is without loss of generality, for the same reason. Let us call an
ordering that satisfies this condition a proper ordering.

4.3 Local search heuristics for priority list mecha-
nisms

Local search heuristics are algorithms that work on the simple idea of iteratively
searching for a better solution. Such a heuristic starts with a base solution and, from
there, iteratively searches a certain neighborhood of the incumbent solution, accord-
ing to some selected definition of neighborhood. For example, for linear orderings,
a pairwise exchange is a standard neighborhood. This underlies, for instance, the
bubble sort algorithm.

Let b(i) denote the incumbent solution in iteration i and Z(b(i)) the set of solu-
tions in its neighborhood. A local search algorithm chooses in iteration i one solution
b(i+ 1) ∈ Z(b(i)), the incumbent solution for the next iteration.

Solutions to the problem we consider here are represented by a linear ordering
of the job types. This allows some relatively simple neighborhoods. We define the
following two:

The pairwise adjacent exchange neighborhood is very simple. For a given solution
b its neighbors are found by switching two adjacent job types in the ordering, if they
are not from the same job with the same processing time.

The pairwise exchange neighborhood is a little bit more involved. The idea is
to switch any two job types. In this case, however, any job types, that are of the
same job and have the processing time as any one of those job types, need to be
switched as well. This works as follows. Take any two job types tj and tk in the
linear ordering that are not from the same job with the same processing time. Take
all job types that are ordered in between tj and tk, that are from the same job and
have the same processing time as either tj or tk. Now, switch tj and tk and order the
other types directly before or after tj or tk such that the result is a proper ordering.

We tested both the pairwise adjacent exchange neighborhood and the pairwise
exchange neighborhood for local search. We considered steepest descent and random
as methods for choosing from the neighborhoods.

Steepest descent computes for all solutions b′ ∈ Z(b) the objective value and
chooses that solution which has the smallest objective value, if it is smaller than
that of the incumbent solution, b. With random we mean randomly selecting a
solution from the neighborhood, until we find one that has a smaller objective value
than the incumbent solution or the maximum number of tries is reached. We set
the maximum tries for the random method to 10

∑
j∈N |Tj |+ 100, where

∑
j∈N |Tj |

is the total number of types. This value kept the running time low, while obtaining
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good results in terms of objective function.
The results of our test of these local search methods are given in Tables 4.1 and

4.2. Both tables show the average results of ten instances, with ten jobs and four
types and five jobs and nine types, respectively.

Starting solution Method Neighborhood Obj. value/opt Comp. time
Smith’s rule Random Pair exchange 1,000 8,698
Smith’s rule Random Adjacent pair 1,002 4,425
Smith’s rule Steepest Pair exchange 1,000 68,043
Smith’s rule Steepest Adjacent pair 1,155 0,217
1D virt. weights Random Pair exchange 1,001 7,785
1D virt. weights Random Adjacent pair 1,001 3,381
1D virt. weights Steepest Pair exchange 1,000 55,285
1D virt. weights Steepest Adjacent pair 1,039 0,169

Table 4.1: Average values over ten instances, with ten jobs, each with four types. The
optimal objective value was computed with the IIA linear ordering ILP formulation,
(3.9)-(3.17). The average computation time to solve the ILP was 1,034 s. Smith’s
rules objective value was 1,160 times the optimal value. 1D virtual weights objective
value was 1,039 times the optimal value.

Starting solution Method Neighborhood Obj. value/opt Comp. time
Smith’s rule Random Pair exchange 1,004 22,141
Smith’s rule Random Adjacent pair 1,048 10,641
Smith’s rule Steepest Pair exchange 1,002 160,803
Smith’s rule Steepest Adjacent pair 1,254 0,426
1D virt. weights Random Pair exchange 1,002 21,584
1D virt. weights Random Adjacent pair 1,022 10,039
1D virt. weights Steepest Pair exchange 1,001 128,123
1D virt. weights Steepest Adjacent pair 1,122 0,488

Table 4.2: Average values over ten instances, with five jobs, each with nine types.
The optimal objective value was computed with the randomized LP formulation. The
average computation time to solve the LP was 0,007 s. Smith’s rules objective value
was on average 1,260 times the optimal value. 1D virtual weights objective value was
on average 1,129 times the optimal value.

What we clearly see from these results, is that the pairwise exchange neighbor-
hood outperforms the adjacent pairwise exchange neighborhood in terms of objective
value. The adjacent pairwise exchange neighborhood seems to outperform the pair-
wise exchange neighborhood in terms of computation time. However, this is mostly
because it hardly finds any improvements on the starting solution. With respect to
the starting solutions, we see that the 1D virtual weights solution seems to perform
a little better than Smith’s rule. However, as we will see in Section 4.5, for larger
instances this difference is much clearer.



4.4 Virtual weights heuristics 61

4.4 Virtual weights heuristics

One way to get an IIA mechanism is by assigning each type a number and, for
each type vector, scheduling the types in increasing order of their assigned numbers,
breaking ties in some predetermined way. This results in an IIA mechanism since
any two types will always get the same relative order. Duives et al. [19] show that,
by assigning each type a virtual weight and ordering the types according to the
ratio of virtual weight over processing time, the single-dimensional case is solved to
optimality. This way of assigning virtual weights to the types also results in an IIA
mechanism.

The reason that assigning virtual weights to the jobs results in optimal mech-
anisms in the single-dimensional case is that, for any Bayes-Nash implementable
scheduling rule, the shortest paths in the type graph are the same. Therefore, the
optimal mechanism can be derived from the virtual weights. In the two-dimensional
case however, there are no such paths that are guaranteed to be shortest paths.
Therefore the same method can not be applied to find the optimal mechanism. Still,
there are several ways to apply the same idea in algorithms for the two-dimensional
case. In this section we treat some experimental algorithms, that are based on the
idea of virtual weights. The simplest of these algorithms is Algorithm 4.1. The
idea is to start with the solution given by the 1D virtual weights and to iteratively
improve the outcome by computing virtual weights over the shortest paths in the
resulting type graph.

Algorithm 4.1 Virtual weight heuristic 1

Input: Set N of Jobs, per Job j a set Tj of types tj = (wj , pj) and ϕj(·)
Output: Order of all job types and payment per job type
Compute 1D virtual weights
while Condition holds do

5: Compute virtual weights over shortest paths found
Update virtual weights with ironed new virtual weights
Compute expected start times
Update arc lengths
Get shortest paths in type graphs

10: Payments = −length shortest paths
end while
Return: best solution in terms of total expected payment

After extensive computational experiments we found that this Algorithm 4.1 has
the following problems.

1. There are, possibly, many different shortest paths in the type graph of one job.

2. Some shortest paths include arcs from higher to lower weight types. This
results in lowering the virtual weight of the lower weighted job and possibly in
negative virtual weights.
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3. Highly variant behavior. When the new virtual weights are applied to the
lengths of the arcs, many of the old shortest paths are not shortest paths
anymore.

4. The algorithm produces solutions that sometimes have higher total payment
than the starting solution. The algorithm does not improve the solution in
every iteration.

5. The algorithm does not settle in one solution. Mostly, the algorithm tends to
cycle between two or three solutions, until stopped artificially.

We conjecture that problem 4 is partly caused by problem 3. Still, we found that
in certain cases the algorithm did not even find one solution that improved on the
starting solution. The combination of problems 4 and 5 makes it hard to come up
with a suitable iteration criterion, except for one based on the number of iterations
or elapsed time. Because of these problems we implemented another heuristic in
which we do the following.

1. We simply let a standard algorithm compute a single shortest path. 1

2. If the shortest path includes any arcs from higher to lower weight types, we
ignore their effect on the virtual weights.

3. Instead of using the new virtual weights instead of the old ones, we take a
convex combination of both.

4. Without a suitable stop condition, we just let the algorithm do ten iterations
and use the best result out of the ten.

Algorithm 4.2 shows the high level pseudo-code of this algorithm. In our tests the
resulting algorithm performed exceptionally well.

4.5 Experiments

We did experiments to test the performance of the heuristics that where discussed
in this chapter2. The experiments where done on random instances, in batches of a
hundred, with a fixed number of jobs and for each job the same, fixed, number of
types. The type space of each job was constructed randomly, such that Tj = Wj×Pj ,
with Wj the set of possible weights for Job j and Pj the set of possible processing
times for Job j. Figures 4.4 to 4.8 show plots of the results of these experiments and
Table 4.3 shows the average computation times. We see that for instances where all
jobs have a small type space, Algorithm 4.2 performs extremely well. For instances

1In our implementation we chose the implementation of the Bellman-Ford algorithm from the
networkx package for Python [30].

2For these experiments we used an Intel(R) Core(TM)2 Duo E8400 3.00 GHz computer with
Windows 7 64-bit operating system with 4.00 GB of memory. Using Python 3.2.5 for implementa-
tions and Gurobi 5.6.3 64-bit to solve the ILP and LP problems.
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Algorithm 4.2 Virtual weight heuristic 2

Input: Set N of Jobs, per Job j a set Tj of types tj = (wj , pj) and ϕj(·)
Output: Order of all job types and payment per job type
Compute 1D virtual weights
for Iterations= 1, . . . , 10 do

5: Compute virtual weights over shortest paths found
Update virt. weights with ironed (1/2(old virt. weights + new virt. weights))
Compute expected start times
Update arc lengths
Get shortest paths in type graphs

10: Payments = −length shortest paths
end for
Return: best solution in terms of total expected payment

where the type spaces are larger, it still performs about ten percent better than just
applying the 1D virtual weights.

From Table 4.3 we see that, for the smaller instances, Algorithm 4.2 is a little
slower than it is to solve the LP relaxation. However, note that the LP relaxation
does not compute deterministic mechanisms. Even solving the smallest of these
instances for the IIA ILP formulation was not possible on the machine that we used
for these computations. Also, for larger instances, Algorithm 4.2 is much faster than
solving the LP formulation. Furthermore, Figure 4.7 and Figure 4.8 seem to suggest
that the quality of the solutions depends on the number of types per job, rather than
the number of jobs or total number of types in the instance.

Instance size 4× 50 9× 50 16× 50 25× 50 25× 100
LP relaxation 0.105 1.262 10.373 77.375 802.039
Smith’s rule 0.036 0.162 0.520 1.369 4.671
1D virtual weights 0.038 0.168 0.532 1.375 4.615
Algorithm 4.2 0.411 1.851 5.871 15.399 50.849

Table 4.3: The average computation times in seconds for the results of Figures 4.4 to
4.8.

4.6 Discussion of the results

The heuristics for two-dimensional scheduling mechanism design, that we discussed
in this chapter, are of an experimental nature. Although we can not prove any
performance bounds, it is clear from the computational results that Algorithm 4.2 is
very efficient for the computation of good deterministic IIA mechanisms for the two-
dimensional scheduling mechanism design problem. It finds good solutions, even for
instances that are way beyond the largest size that commercial solvers can reasonably
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Figure 4.4: Results from a hundred random instances with 50 jobs, each with 4 types.
The graph shows the objective value found for Smith’s rule (upper), 1D virtual weights
(middle) and Algorithm 4.2 (lower), all normalized to the optimal randomized objec-
tive.
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Figure 4.5: Results from a hundred random instances with 50 jobs, each with 9 types.
The graph shows the objective value found for Smith’s rule (upper), 1D virtual weights
(middle) and Algorithm 4.2 (lower), all normalized to the optimal randomized objec-
tive.

solve the IIA ILP and in much less time than commercial solvers need to solve the
randomized LP formulation. Also, it provides solutions that lie near the optimal
randomized solution for instances with few types per job, while the solutions are still
significantly better than the solutions provided by either Smith’s rule or 1D virtual
weights rule. We therefore think that our results are very encouraging towards future
research on both fast and effective heuristics for multi-dimensional mechanism design
problems.
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Figure 4.6: Results from a hundred random instances with 50 jobs, each with 16
types. The graph shows the objective value found for Smith’s rule (upper), 1D virtual
weights (middle) and Algorithm 4.2 (lower), all normalized to the optimal randomized
objective.
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Figure 4.7: Results from a hundred random instances with 50 jobs, each with 25
types. The graph shows the objective value found for Smith’s rule (upper), 1D virtual
weights (middle) and Algorithm 4.2 (lower), all normalized to the optimal randomized
objective.
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Figure 4.8: Results from ten random instances with 100 jobs, each with 25 types. The
graph shows the objective value found for Smith’s rule (upper), 1D virtual weights
(middle) and Algorithm 4.2 (lower), all normalized to the optimal randomized objec-
tive.



CHAPTER 5

Intersecting and decomposing the

scheduling polytope

In Chapter 3 we have seen that the two dimensional scheduling mechanism design
problem can be solved with an LP relaxation. For each type vector, this results in
a point that lies in the single machine scheduling polytope, as defined in Chapter 1.
Recall that, for n jobs, the scheduling polytope is an n − 1 dimensional polytope.
Therefore, Carathéodory’s theorem tells us that any such point can be written as
a convex combination of at most n vertices of the polytope. In this chapter we
investigate algorithms that, given a point in the scheduling polytope, find such a
convex combination of vertices. We call such algorithms decomposition algorithms.

We know from Queyranne [58] that the separation problem for the scheduling
polytope can be solved in time O(n log n). From this and the ellipsoid method,
it follows that a polynomial time decomposition algorithm exists [28]. Still, Cun-
ningham [17] already remarked that it is interesting to find efficient combinatorial
decomposition algorithms for specific polymatroids, and that it is, in general, not
straightforward to do so, even if the underlying optimization problem is well under-
stood and can be solved efficiently. Decomposition of feasible points into vertices
also plays an important role in algorithms for submodular function minimization,
starting with work by Cunningham [16, 17], and including the strongly polynomial
time algorithms of Schrijver [65] and Iwata et al. [43].

For general polytopes, Grötschel et al. [29, Thm. 6.5.11] propose the following
geometric approach to find a decomposition: Given some point x in a polytope P ,
pick an arbitrary vertex v of P , and compute the point x′ ∈ P where the half-line
through v and x leaves P . This point lies on a face(t) of P , such that we can recur
on that face(t). We call this the GLS method. One iteration of the GLS method is
illustrated in Figure 5.1.

To efficiently use the GLS method, we need a way to efficiently compute x′ and a
facet on which it lies. For polymatroids, this can be done with an algorithm described
by Fonlupt and Skoda [24]. For the scheduling polytope, a direct application of their
result leads to an algorithm that runs in time O(n8).

In this chapter, we propose two algorithms. The first algorithm computes, in time
O(n2 log n), the intersection of a line with the scheduling polytope. This algorithm,
together with GLS method, results in an algorithm that decomposes any point in
the scheduling polytope into at most n vertices in time O(n3 log n). The second
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P

F

v x
x′

Figure 5.1: Illustration of the decomposition algorithm by Grötschel, Lovász, and
Schrijver. From some vertex v ∈ P , extend a half-line from v in the direction x − v,
until it intersects a lower dimensional face F of P in a point x′. The point x can
be written as a convex combination of v and x′. Recurs with the face F and the
intersection point x′ to obtain a convex combination of vertices of F that yields x′.

algorithm is a decomposition algorithm that takes advantage of the fact that the
scheduling polytope is a zonotope, which we define later. It is an algorithm that
decomposes a point in the scheduling polytope in time O(n2). The algorithm applies
the GLS method to an appropriately chosen subpolytope of the scheduling polytope.
The resulting decomposition into vertices of that subpolytope can then easily be
translated into a decomposition into vertices of the scheduling polytope itself. In
fact, it turns out that this algorithm is a generalization of a decomposition algorithm
for the permutahedron by Yasutake et al. [69]. Therefore, it provides a geometric
interpretation of their algorithm.

We consider the scheduling polytope as described by (1.2) and (1.3). Recall that,
if pj > 0 for all j ∈ N , none of these inequalities is redundant, and the dimension is
n − 1 [58]. For all algorithmic purposes that we can think of, the degenerate case,
where for some jobs pj = 0, does not add anything interesting, since we can simply
eliminate such jobs and reintroduce them afterwards. In particular, this is true for
the problems we address here. Thus, we assume that pj > 0 for all jobs j ∈ N from
now on.

First we state a lemma that directly follows from Queyranne [58]; it shows that
the separation problem for the scheduling polytope can in fact be solved by sorting.
Let QS denote the scheduling polytope for start time vectors and let g(K) be defined
by (1.1).

Lemma 5.1. Let S be a given vector sorted such that S1 ≤ S2 ≤ . . . ≤ Sn. Then
S ∈ QS if and only if

∑
j∈N pjSj = g(N) − (1/2)

∑
j∈N (pj)

2 and
∑
j∈K pjSj ≥

g(K)− (1/2)
∑
j∈K(pj)

2 holds for all K = {1, . . . , k}, k ∈ N . In particular, if there
is a set K ⊆ N that violates (3.7), then there is a k ∈ N such that the set {1, . . . , k}
also violates (3.7).

Proof. Let

Γ(K) := g(K)− 1

2

∑
j∈K

(pj)
2 −

∑
j∈K

pjSj , (5.1)

be the function that measures the violation of (3.7). Queyranne [58, Lem. 5.2] shows
that for given S, if K ⊆ N maximizes the violation Γ(K) then l /∈ K if and only
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if Sl ≥
∑
j∈K pj . Suppose K is a set that maximizes Γ(K). Choose k such that

Sk <
∑
j∈K pj and Sk+1 ≥

∑
j∈K pj . Then j ∈ K for all j ∈ {1, . . . , k} and j /∈ K

for all j ∈ {k+ 1, . . . , n}, so K = {1, . . . , k}. Therefore if there is a set that violates
(3.7), i.e. Γ(K) > 0, then there is an index k such that the set {1, . . . , k} maximizes
that violation and thus also violates (3.7).

5.1 Intersection of a line and the scheduling poly-
tope

In this section, we describe an algorithm that computes the point where a line, given
by L = {x+λy | λ ∈ R}, intersects the scheduling polytope QS . Let `(λ) := x+λy
and assume y 6= 0. The simple idea is this: For each point, `(λ), on the line L, we
consider the non-increasing order of its components. Every such order, σ, induces n
nested sets, {σ(1), . . . , σ(k)}, for each k = 1, . . . , n, which correspond to the sets K
from Lemma 5.1. Here σ(i) denotes the component that is i-th in the order σ. The
line L intersects a half-space, corresponding to (3.7), in a point where Γ(K) = 0 for
`(λ) and K is a nested set. Now, we enumerate all orders on L and their induced
nested sets. From these we get two points that are the intersections of L with one of
the faces of the scheduling polytope, while all points of L, in between, are inside the
polytope. This results in an efficient algorithm, as all points on L, have, in total, at
most O(n2) induced orders σ of the components of `(λ).

Lemma 5.2. The vectors `(λ) on the line L have at most O(n2) different induced
orders σ of their components.

Proof. On the line L, the relative order of components i and j of vector `(λ) can
change at most once, since L is a line.

By Lemma 5.2 we have no more than O(n2) induced orders on L and it is not
hard to see that they can all be computed in O(n3) total time. These O(n2) orders
give rise to no more than O(n3) candidate sets K for the intersection of half-spaces,
(3.7), with the line L. We can compute the intersection of the half-space induced
by K with L in time O(n), by solving Γ(K) = 0. Hence, for any two candidates
we can decide, in time O(n), which of the two intersections is closer to QS . By this
line of arguments we get an O(n4) time bound for computing a facet on which the
half-line L leaves polytope QS . A slightly more clever bookkeeping, however, allows
to obtain a better computation time.

Theorem 5.3. Let QS be the scheduling polytope for start times, induced by the
vector of processing times p ∈ Rn>0. For given x, y ∈ Rn, y 6= 0, the computation of
the intersection of the line L = {x+ λy | λ ∈ R} with QS, together with the facets
of QS, on which L intersects, can be done in time O(n2 log n).

Proof. The idea of the algorithm is as follows. The relative order of any pair of
components i and j, of `(λ) ∈ L, can change at most once on the line L. For each
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such pair i, j, such that yi 6= yj , this order changes exactly when the components
have equal value, i.e. at the point `(λ(i, j)), where

λ(i, j) =
xi − xj
yj − yi

.

For any pair i, j with yi = yj the relative order of i and j is the same over the whole
line L, so these need not be considered.

These points, `(λ(i, j)), divide L into intervals, I, on which there is a single
induced order σ of the components of the vectors ` ∈ I. This not only bounds
the number of induced orders by O(n2), it also bounds the total number of distinct
nested sets K = {σ(1), . . . σ(k)}, k = 1, . . . , n, for all induced orders σ, by O(n2).
This because, at `(λ(i, j)), only the relative order of the components i and j changes1.
This means that i and j are consecutive in the induced orders of the two intervals
incident with the point `(λ(i, j)). Therefore, all induced nested sets K for these two
intervals are identical, except for the one which contains exactly one of i and j.

Each of these induced nested sets K gives rise to one inequality (3.7) and for each
such set K, for which

∑
j∈K pjyj 6= 0, the line L intersects the hyper-plane defined

by (3.7) for K. Let us denote by δ(K), the parameter such that `(δ(K)) is exactly
this intersection point. Note that δ(K) can be easily computed if L and K are given.
If
∑
j∈K pjyj = 0, then the line, L, and the hyper-plane, induced by (3.7) for K, are

affinely dependent, and there is no intersection. The values δ(K) can now be divided
into two sets: those for which q ≥ δ(K) for any `(q) ∈ L ∩QS and those for which
q ≤ δ(K) for any `(q) ∈ L ∩QS . These provide lower bounds and upper bounds for
the intersection of L and QS , respectively. The largest lower bound, denoted δ, and
the smallest upper bound, denoted δ, exactly yield the intersection of L and QS ,
{x+ λy | λ ∈ [δ, δ]}.

To see why, note that for every `(λ), with δ ≤ λ ≤ δ, (3.7) holds for all K that
are induced nested sets of vector `(λ). Therefore, we have from Lemma 5.1 that
`(λ) ∈ QS , and `(λ) ∈ L by definition. Also, for any `(λ) with λ > δ = δ(K) for
some nested set K, (3.7) is violated for K and thus `(λ) /∈ QS . Likewise for any `(λ)
with λ < δ, we have `(λ) /∈ QS .

The idea is now to compute δ and δ, together with the corresponding facet
inducing nested sets, K, by ‘moving’ along L in the order of sorted values λ(i, j),
and updating the nested sets K, and all other necessary parameters, incrementally.
Algorithm 5.1 gives the complete pseudocode for computing the intersection of a line
L with the scheduling polytope QS .

We briefly explain the pseudocode and analyze the computation time in the
following. In line 3, the values δ and δ and L and K, are initialized. L is the list
of parameters λ(i, j), on which the induced orders of `(λ) change. K contains all
necessary information needed for the nested sets K and incremental updating in the
course of the algorithm. The computation time of this initialization is O(1).

1If multiple pairs of components change their relative order in the same point `(λ), we can treat
these separately in the analysis to obtain the same result.
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Algorithm 5.1 Intersection algorithm

Input : processing time vector p ∈ Rn>0, vectors x ∈ Rn and 0 6= y ∈ Rn

Output: values δ and δ

δ := −∞, δ :=∞, L := [ ], K := [ ].
for i = 1 to n do

5: for j = 1 to i− 1 and yj 6= yi do
λ(i, j) := (xi − xj)/(yj − yi)
L := L+ [((i, j), λ(i, j))]

end for
end for

10: Sort L increasing in λ(i, j)
λ0 := λ(i, j) of first element of L
σ := order of `(λ0 − 1)
for j = 1 to n do
K(j) := {σ(1), . . . , σ(j)}

15: P (K(j)) := P (K(j − 1)) + pj
F (K(j)) := F (K(j − 1)) + P (K(J − 1))pj − pjxj
Y (K(j)) := Y (K(j − 1)) + pjyj
K := K+ [(K(j), P (K(j)), F (K(j)), Y (K(j)))]

end for
20: for K ∈ K and Y (K) 6= 0 do

δ(K) :=
F (K)
Y (K)

if F (K)− (δ(K) + 1)Y (K) > 0 then

δ := min{δ, δ(K)}
else

25: δ := max{δ, δ(K)}
end if

end for
for (λ(i, j), (i, j)) ∈ L do

if σ−1(i) < σ−1(j): then

30: K := σ−1(i)-th element in K
K′ := K \ {i} ∪ {j}
P (K′) := P (K)− pi + pj
F (K′) := F (K)− ( 1

2P (K)− 1
2p

2
i − pixi) + ( 1

2P (K′)− 1
2p

2
j − pjxj)

Y (K′) := Y (K)− piyi + pjyj
35: else

K := σ−1(j)-th element in K
K′ := K \ {j} ∪ {i}
P (K′) := P (K)− pj + pi
F (K′) := F (K)− ( 1

2P (K)− 1
2p

2
j − pjxj) + ( 1

2P (K′)− 1
2p

2
i − pixi)

40: Y (K′) := Y (K)− pjyj + piyi
end if
Replace (K,P (K), F (K), Y (K)) in K by (K′, P (K′), F (K′), Y (K′))
Switch i and j in the order σ

δ(K′) :=
F (K′)
Y (K′)

45: if F (K′)− (δ(K′) + 1)Y (K′) > 0 then

δ := min{δ, δ(K′)}
else
δ := max{δ, δ(K′)}

end if
50: end for

return δ, δ

In lines 4 to 9, the values λ(i, j) are computed and added to L and in line 10,
L is sorted in ascending order. Since there are at most O(n2) of these values, the
sorting can be done in time O(n2 log n).

In line 11, λ0 is set to the smallest λ(i, j) and in line 12, σ is set to be the order
of `(λ0 − 1). This order corresponds to the ascending order of all components of
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`(λ), for λ < λ0. It can be computed in time O(n log n).
In lines 13 to 19, all nested subsets, K(j), that are induced by σ are stored in

K together with the values P (K(j)), F (K(j)) and Y (K(j)). Note that F (K(j)) −
λY (K(j)) is exactly equal to Γ(K(j)) for the point `(λ). Therefore Γ(K(j)) =
0 for `(δ(K(j))). Computing the values P (K(j)), F (K(j)) and Y (K(j)) is done
incrementally in time O(1). Since there are at most O(n) nested subsets K(j),
computing all of them can be done in time O(n).

In line 21, δ(K) is computed, such that Γ(K) = 0 for `(δ(K)), and the if-clause,
on line 22, determines if (3.7) for K is satisfied by points `(λ), for λ > δ(K), or by
points `(λ), for λ < δ(K). In case of the former, δ(K) is an upper bound and, in
case of the latter, δ(K) is a lower bound, which is then updated accordingly in lines
23 or 25. All steps can be computed in time O(1), there are O(1) computations per
subset K and there are O(n) subsets, therefore all computations can be done in time
O(n).

In lines 28 to 50, for each λ(i, j), in ascending order, we first determine how the
order will change, i.e., whether i was before j or the other way around. Let us assume
the former, the latter is symmetric. Then, K is the σ−1(i)-th induced subset of σ,
i.e. the subset containing i but not j. Here σ−1(i) denotes the position that compo-
nent i has in order σ. K ′ is computed as the new induced subset and P (K ′), F (K ′)
and Y (K ′) as the corresponding values. These replace (K,P (K), F (K), Y (K)) in
K, while i and j are switched in σ. Then, the value δ(K ′) is computed, it is again
determined if the upper or the lower bound has to be updated and this is done ac-
cordingly. Each step can be computed in time O(1) and there are O(1) computations
per iteration. There are O(n2) iterations, therefore all computation can be done in
time O(n2).

If the returned values δ < δ, then the intersection of QS and L is empty. Other-
wise the interval, {x+ λy | λ ∈ [δ, δ]}, is the intersection of QS and L.

The computation time of the algorithm is dominated by the sorting of the values
λ(i, j) in line 10. So the total computation time of the algorithm is O(n2 log n).
We can easily find the facets at which the line L and the scheduling polytope QS

intersect by repeating lines 13 to 19 for δ and δ.

5.2 Decomposition algorithm

If we combine Algorithm 5.1 with the GLS method we obtain a decomposition algo-
rithm for the scheduling polytope that runs in time O(n3 log n). In this section we
show that this can be improved to time O(n2) by using a geometric algorithm, based
on the fact that the scheduling polytope is a zonotope. In contrast to Algorithm
5.1, the next algorithm, while it finds a decomposition faster, it does not yield the
intersection of the scheduling polytope with a line.

Essentially, we show two things. First, we show that there is an O(n2) decomposi-
tion algorithm for the single machine scheduling polytope. The core of our algorithm
remains the GLS method. However, we apply the method to a specific subpolytope
of a polyhedral subdivision of the scheduling polytope for half times, Q. We obtain
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Q by shifting QS by half the processing times of the jobs: Q = QS + p/2. Second, it
turns out that our algorithm is a generalization of a decomposition algorithm for the
permutahedron, by Yasutake et al. [69]. Our algorithm augments their result with
a simple, geometric interpretation. In particular, this shows that their algorithm is
in fact, also, an implementation of the GLS method.

It should be mentioned that the idea of using half times, also referred to as mid-
points, is not new in scheduling. It has proven to be helpful particularly for the
design and analysis of approximation algorithms. Phillips et al. [57] were proba-
bly the first to use half times to analyze an approximation algorithm, and Munier
et al. [48] were the first to use half times explicitly in the design of approximation
algorithms.

Crucial to get our results is exploitation of the fact that the scheduling polytope
is a zonotope. This means that all its faces are centrally symmetric. As each of the
centers of a given face has a representation by two vertices, it suffices to decompose
a given point into (certain) centers. To decompose a given point into centers, we
consider the polyhedral subdivision of the scheduling polytope that is induced by
these centers. This is also called a barycentric subdivision [46]. We can show that,
for the scheduling polytope for half times, this subdivision has a simple, linear,
description, which we can exploit algorithmically.

We believe that our results are interesting due to the following reasons. First,
consider applying the GLS method directly to the scheduling polytope. In order
to obtain an O(n2) implementation, one would have to compute a face F and the
intersection point of the halfline through v and x with F in O(n) time in each
iteration. We do not see how to do this. Second, consider a naive, unit-cost, encoding
of the output. Then, the O(n2) implementation is only linear in the output size.
Third, our structural results shed new light on a well-studied object in polyhedral
combinatorics, namely the single machine scheduling polytope.

Since the permutahedron and the scheduling polytope are so similar, an affine
transformation from one to the other even exists, one may ask why we do not simply
transform the scheduling polytope to the permutahedron, then decompose it and
transform it back. We answer this question with the following lemma which shows
that such a transformation does not preserve decompositions.

Lemma 5.4. Transforming different convex combinations of vertices of the permuta-
hedron, that describe the same point, to the scheduling polytope may result in convex
combinations of vertices of the scheduling polytope, that describe different points.

Proof. Consider the permutahedron for (1, 2, 3). We have

1

3
(1, 2, 3) +

1

3
(3, 1, 2) +

1

3
(2, 3, 1) = (2, 2, 2) , (5.2)

1

2
(1, 2, 3) +

1

2
(3, 2, 1) = (2, 2, 2) . (5.3)

However, if we translate the orders to their corresponding completion time vectors
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in the scheduling polytope with p = (1, 2, 3), we get

1

3
(1, 3, 6) +

1

3
(6, 3, 5) +

1

3
(4, 6, 3) = (

11

3
,

11

3
,

14

3
) , (5.4)

1

2
(1, 3, 6) +

1

2
(6, 5, 3) = (

7

2
,

8

2
,

9

2
) . (5.5)

5.2.1 Zonotopes

Definition 5.1 (centrally symmetric polytope, zonotope). Let P ⊆ Rn be a poly-
tope.

P is centrally symmetric if it has a center c ∈ P , such that c+ x ∈ P if and only
if c− x ∈ P .

If all faces of P are centrally symmetric, then P is called a zonotope.

An equivalent definition of centrally symmetric is that there exists a center, c ∈ P ,
such that for all x ∈ P also 2c− x ∈ P .

Also zonotopes have alternative definitions. They are exactly the images of
(higher-dimensional) hypercubes under affine projections, and they are exactly the
Minkowski sum of line segments [71]. The standard textbook example for zonotopes
is, actually, the permutahedron [71].

The scheduling polytope with arbitrary processing times is a zonotope, too. This
can be seen in several ways. For example, as we have seen in Lemma 3.1, the
scheduling polytope can be obtained as an affine transformation from a hypercube
in dimension

(
n
2

)
, via linear ordering variables [59, Thm. 4.1].

Theorem 5.5 (Queyranne and Schulz [59, Thm. 4.1]). The scheduling polytope is
a zonotope.

With respect to the centers of the faces of the scheduling polytope for halftimes,
we have the following lemma.

Lemma 5.6. Consider an arbitrary face F of Q, defined by the ordered partition
(D1, . . . , Dk), then the center of symmetry (or barycenter or center of mass), c(F ),
of F is given by

c(F )j =

i−1∑
`=1

∑
h∈D`

ph +
1

2

∑
h∈Di

ph for all j ∈ Di . (5.6)

Given that a face F of Q corresponds to some ordered partition (D1, . . . , Dk),
this is not difficult to verify. For the sake of completeness, we give a proof here.

Proof. Let F be any face of Q, and let v be a vertex of F . Let (D1, . . . , Dk) be the
ordered partition corresponding to F . Then v corresponds to an ordering such that
jobs in Da are ordered before jobs in Db for all a < b. Now let v′ be the vertex of F



5.2 Decomposition algorithm 75

that corresponds to the following order: for any two jobs i, j ∈ Da and i 6= j, we let
j be ordered before i if and only if i is ordered before j in v. Note that, for any v,
there is exactly one v′ in F that satisfies this order.

We show that indeed c(F ) = 1
2 (v + v′). Suppose that j ∈ Da. Then for any

b < a, in both v and v′ any job i ∈ Db is ordered before job j. For any b > a, in
both v and v′ any job i ∈ Db is ordered after job j. And, for any job i ∈ Da, i 6= j,
job i is ordered before job j in one of v and v′ and ordered after job j in the other.
From this we have that

1

2
(v + v′)j =

a−1∑
`=1

∑
h∈D`

ph +
1

2

∑
h∈Da

ph for all j ∈ Da ,

which is indeed c(F )j as defined by Lemma 5.6. Therefore we have that c(F ) =
1
2 (v + v′) and thus v′ = 2c(F ) − v. Since this holds for any vertex v ∈ f , it follows
that for any point x ∈ f there exists a point x′ ∈ f such that x′ = 2c(F ) − x and
thus c(F ) is the center of F .

In particular, observe that all j ∈ Di have the same value, c(F )j , and the center
of Q is the point c where all values ci coincide, i.e., c1 = . . . = cn. Note that
this is no longer true if we consider the scheduling polytope for start or completion
times. The property that all faces of a zonotope are centrally symmetric and the
simple description of these centers by Lemma 5.6, is important for the design of the
decomposition algorithm in Section 5.2.3.

5.2.2 Barycentric subdivision

Consider the following, polyhedral subdivision of the scheduling polytope Q. For
any vertex v of Q, define polytope Qcv as the convex hull of all barycenters c(F ) of
faces F that contain v:

Qcv := conv{c(F ) | v ∈ f} .

Then we have Q =
⋃
v Q

c
v. By construction, v is the only vertex of Q that is also a

vertex of Qcv. The subdivision thus obtained is also known as barycentric subdivision
[46].

Another polyhedral subdivision of the scheduling polytope Q is obtained by sub-
dividing the polytope according to orders as follows.

Definition 5.2. Let P ⊆ Rn be a polytope. We define a relation ∼ on P as follows:
for two points x, y ∈ P , we have x ∼ y if there exists a permutation σ : {1, . . . , n} →
{1, . . . , n} such that both xσ(1) ≤ . . . ≤ xσ(n) and yσ(1) ≤ . . . ≤ yσ(n).

Based on this definition, define for any vertex v ∈ Q the polytope

Qσv := {x ∈ Q | x ∼ v} .

Because every permutation σ is represented by a vertex of Q, we have Q =
⋃
v Q

σ
v ,

and v is the only vertex of Q that is also a vertex of Qσv .
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The following two lemmas encode the core and geometric intuition behind the
decomposition algorithm that we develop in Section 5.2.3. They show that the two
polyhedral subdivisions above are in fact equivalent. Thus, we obtain a description
of the barycentric subdivision in terms of vertices and facets, all of which can be
described explicitly by simple expressions. These insights can be exploited algorith-
mically.

Lemma 5.7. Let Q be the single machine scheduling polytope for half times, let v be
an arbitrary vertex of Q and let σ denote a permutation such that vσ(1) ≤ . . . ≤ vσ(n).
Then Qσv has the following, linear description:

Hσ(j) ≤ Hσ(j+1) for all j ∈ {1, . . . , n− 1} , (5.7)

j∑
i=1

Hσ(i)pσ(i) ≥
1

2

(
j∑
i=1

pσ(i)

)2

for all j ∈ {1, . . . , n− 1} , and (5.8)

∑
j∈N

Hjpj =
1

2

∑
j∈N

pj

2

. (5.9)

Proof. Qσv ⊆ Q, (5.8) and (5.9) are satisfied for every point in Qσv . Since σ is the
only permutation with vσ(1) ≤ . . . ≤ vσ(n), we have that H satisfies (5.7) if H ∼ v.
Therefore, (5.7) holds for any point in Qσv .

It remains to be shown that (5.7), (5.8), and (5.9) imply H ∈ Qσv . Let H satisfy
(5.7), (5.8) and (5.9). For simplicity of notation and without loss of generality, let
all vectors be sorted such that Hi ≤ Hj if and only if i ≤ j. Then, for each j, we
have (

j∑
i=1

pi

)
Hj ≥

j∑
i=1

piHi ≥
1

2

(
j∑
i=1

pi

)2

.

Thus, Hj ≥ 1
2

∑j
i=1 pi for all j. Now suppose H satisfies (5.7), (5.8), and (5.9), but

H /∈ Q. Then there is a set K of minimal cardinality, such that (1.2) is not satisfied.
This means that ∑

i∈K
piHi <

1

2

(∑
i∈K

pi

)2

.

But then, for j = maxk∈K k, we have∑
i∈K\{j}

piHi =
∑
i∈K

piHi − pjHj <
1

2

(∑
i∈K

pi

)2

− pjHj

≤ 1

2

(∑
i∈K

pi

)2

− pj
1

2

(
j∑
i=1

pi

)

≤ 1

2

(∑
i∈K

pi

)2

− pj
1

2

(∑
i∈K

pi

)
=

1

2

 ∑
i∈K\{j}

pi

2

.
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This contradicts that K is a set of minimal cardinality that does not satisfy (1.2).
So (5.7), (5.8), and (5.9) imply H ∈ Q.

Now suppose H ∈ Q \ Qσv , then H ∈ Qσv′ for some other vertex v′ ∈ Q, which
would imply that (5.7) is not valid for H. Hence, H ∈ Qσv .

Lemma 5.8. Let Q be the single machine scheduling polytope in half times. Then,
for all vertices v of Q, we have

Qcv = Qσv .

Proof. Lemma 5.6 implies that the vertices of Qcv are given by (5.6) for all F 3 v.
From (5.6), we have q ∼ v for any vertex q of Qcv. It follows that Qcv ⊆ Qσv .

Now, by Lemma 5.7, any vertex of Qσv is obtained by having n−1 tight constraints
among (5.7) and (5.8). Consider any such vertex q of Qσv .

Let ` ∈ {1, . . . , n− 1}. If (5.8) is tight for q for k = `, then (5.7) cannot be tight
for q for j = `. This is because if (5.8) is tight for q and k = `, then jobs 1, . . . , ` are
scheduled before jobs `+ 1, . . . , n. Therefore,

q`+1 ≥
1

2
p`+1 +

∑̀
j=1

pj

and

q` ≤
1

2
p` +

`−1∑
j=1

pj .

Thus, q` < q`+1 since all processing times are assumed to be positive. This implies
that for any ` ∈ {1, . . . , n− 1}, we have that q satisfies exactly one of the following:
(5.8) is tight for k = ` or (5.7) tight for j = `. The inequalities (5.8) that are tight
for q induce an ordered partition (D1, . . . , Dk) that corresponds to a face F 3 v.
The inequalities (5.7) that are tight for q ensure that qj = qj+1 for all j ∈ Di and
any i ∈ {1, . . . , k}.

It follows that q = c(F ) and, thus, q is a vertex of Qcv. Since this holds for any
vertex of Qσv , we have Qσv ⊆ Qcv. Thus, Qσv = Qcv.

For simplicity of notation, we define Qv := Qcv (= Qσv ).
Figure 5.2 illustrates the barycentric subdivision of the scheduling polytope. It

shows the scheduling polytope for three jobs together with its barycentric subdivision
(indicated by dashed lines). The subpolytope containing vertex v213 contains all
vectors H ∈ Q for which H2 ≤ H1 ≤ H3. Its vertices are v213, and all centers of
faces on which v213 lies. Its facets are defined by H1p1+H2p2+H3p3 = (p1+p2+p3)2

together with one of the following equalities:

H1p1 +H2p2 = (p1 + p2)2 ,

H2p2 = (p2)2 ,

H2 = H1 ,

H3 = H1 .
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v123

v213 v231

v321

v312v132

1
2v123 + 1

2v213

1
2v123 + 1

2v132

1
2v213 + 1

2v231

Figure 5.2: Barycentric subdivision of a scheduling polytope with three jobs. vijk
denotes the vertex corresponding to the order i, j, k

5.2.3 Decomposition on a subpolytope

Based on Lemma 5.7, we next develop a decomposition algorithm for the scheduling
polytope that runs in time O(n2). This algorithm can be seen as a generalization
of a decomposition algorithm for the permutahedron, by Yasutake et al. [69]. We
argue here that this algorithm is in fact an application of the GLS method [29, Thm.
6.5.11].

We first describe the high level idea of the decomposition algorithm for the
scheduling polytope, before diving into the technical details.

We know that any point H ∈ Q lies in a subpolytope Qv of the barycentric
subdivision of Q, namely for a vertex v for which v ∼ h according to Definition 5.2.2

Moreover, Qv is described by inequalities (5.7) and (5.8), and the vertices of Qv
consist of the points v+v′

2 for all vertices v′ of Q. This means that a decomposition
of H into vertices of Qv also yields a decomposition into vertices of Q.

The idea of our algorithm is as follows: We find a decomposition of H into vertices
of Qv by using the GLS method [29, Thm. 6.5.11]. The idea of this algorithm is
illustrated in Figure 5.3: Given H = H1 ∈ Qv (we have v = v1), we extend the
difference vector H1−v1 towards the intersection with a lower dimensional face of Qv
(this will be a facet of Qv, unless we accidentally hit a face of even lower dimension).
Then recurse with this intersection point and the face on which it lies. To arrive
at the claimed computation time, it is crucial that both the intersection point and

2In case of ties, H lies on the intersection of several of such subpolytopes, namely those corre-
sponding to vertices v with v ∼ h. We can break such ties arbitrarily.
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the face(t) on which it lies can be computed in time O(n). This is indeed possible
because of Lemma 5.7. As the number of iterations is bounded by the dimension
of Qv, which is equal to the dimension of Q, this gives an O(n2) implementation.

Finally, by the fact that all vertices of Qv can be written as v+v′

2 for vertices v′ of
Q, we obtain a decomposition of H into at most n vertices of Q.

v1 = q1

v3

v2

H3 = c(Q)
H1

q2

H2

F 2

Figure 5.3: Visualization of the decomposition algorithm on a single machine schedul-
ing polytope for three jobs

In order to describe the technical details of the algorithm, we use the following
notation and facts, all of which follow from the structural insights of Section 5.2.2.

v: vertex of Q corresponding to the permutation 1, 2, . . . , n; we have v = v1;

J t: set of indices;

F t: face of Qv associated with J t such that xj = xj+1 for all x ∈ F t and all
j ∈ {1, . . . , n− 1} \ J t;

qt: vertex of F t;

vt: vertex of Q such that qt = 1
2 (v + vt);

Ht: point in F t;

κ̃t: scalar such that Ht = κ̃tq
t + (1− κ̃t)Ht+1;

κt: scalar corresponding to qt in the convex combination H =
∑
t κtq

t.

λt: scalar corresponding to vt in the convex combination H =
∑
t λtv

t.

Moreover, for ease of notation and without loss of generality, we assume that the
given point H ∈ Q satisfies H1 ≤ . . . ≤ Hn.3

3This comes at the expense of sorting, which costs O(n logn) time and, thus, falls within the
O(n2) time complexity of the proposed algorithm.
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Algorithm 5.2 Decomposition algorithm

Input: processing times p, point H ∈ Q with H1 ≤ . . . ≤ Hn
Output: at most n vertices vt of Q and coefficients κt ∈ [0, 1]
t := 1, H1 := H, J1 := {i ∈ {1, . . . , n− 1} | H1

i < H1
i+1}

let v be the vertex with v1 ≤ . . . ≤ vn
5: while Jt 6= ∅ do

qt := VERTEX(Jt)
vt := 2qt − v
κ̃t := minj∈Jt (H

t
j+1 −Ht

j)/(q
t
j+1 − qtj)

Ht+1 := (Ht − κ̃tqt)/(1− κ̃t)
10: Jt+1 := {i ∈ Jt | Ht+1

i < Ht+1
i+1 }

κt := (1−
∑t−1
τ=1 κτ )κ̃t

t := t+ 1
end while
qt := Ht

15: vt := 2qt − v
κt := 1−

∑t−1
τ=1 κτ

λ1 := 1
2

+ 1
2
κ1

for τ ∈ {2, . . . , t} do
λτ := 1

2
κτ

20: end for

The subroutine VERTEX(J t) computes the vertex corresponding to the face associ-
ated with J t as follows: Let J t(i) denote the i-th element in J t and define J t(0) = 1.
Then, for j ∈ {J t(i), . . . , J t(i+ 1)− 1}, we compute

qtj =

Jt(i)−1∑
k=1

pk +
1

2

Jt(i+1)−1∑
k=Jt(i)

pk .

Note that vertex qt can be computed in linear time per iteration by just com-

puting P ti :=
∑Jt(i+1)−1
k=Jt(i) pk for all i, in time O(n). Then, qt1 = 1

2P
t
1 , and for

j ∈ {J t(i), . . . , J t(i+ 1)− 1} and k ∈ {J t(i+ 1), . . . , J t(i+ 2)− 1}, the values for qt

are computed iteratively as qtk = qtj + 1
2 (P ti + P ti+1).

Theorem 5.9. For any H ∈ Q, Algorithm 5.2 outputs a convex combination of
vertices of Q for H in O(n2) time.

Proof. Qv is chosen such that H ∈ Qv. From line 10 of the algorithm we have that
inequalities (5.7) are tight for Ht and all j /∈ J t. Thus, if Ht ∈ Qv implies that
Ht+1 ∈ Qv, then Ht ∈ f t for all t. By construction, qt is the vertex of F t for which
(5.7) is tight for all j /∈ J t and (5.8) is tight for all k ∈ J t. Now suppose Ht ∈ Qv.
Then, of course, Ht and qt satisfy (5.8), and we have

k∑
j=1

Ht+1
j pj =

k∑
j=1

pj
Ht
j − κ̃tqtj
1− κ̃t

≥ 1

2

 k∑
j=1

pj

2
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for all k ∈ {1, . . . , n}. Since we have

κ̃t = min
j∈Jt

Ht
j+1 −Ht

j

qtj+1 − qtj
, (5.10)

and both Ht and qt satisfy inequalities (5.7), we have the following for all j ∈
{1, . . . , n− 1}:

Ht+1
j+1 −H

t+1
j =

Ht
j+1 − κ̃tqtj+1

1− κ̃t
−
Ht
j − κ̃tqtj
1− κ̃t

=
1

1− κ̃t
(
Ht
j+1 −Ht

j − κ̃t
(
qtj+1 − qtj

))
.

It follows from (5.10) that κ̃t ≥
Htj+1−H

t
j

qtj+1−qtj
for all j ∈ J t. Thus,

Ht+1
j+1 −H

t+1
j >

1

1− κ̃t

(
Ht
j+1 −Ht

j −
Ht
j+1 −Ht

j

qtj+1 − qtj

(
qtj+1 − qtj

))
= 0 .

Hence, Ht+1 satisfies (5.7)–(5.9). From Lemma 5.7, we have Ht+1 ∈ Qv and, there-
fore, Ht+1 ∈ F t+1.

In addition, (5.10) ensures that for at least one j ∈ J t, we have Ht+1
j+1 = Ht+1

j and

thus |J t+1| < |J t|. Since |J1| ≤ n− 1, the algorithm terminates after at most n− 1
iterations. Let t∗ be the value of t as the algorithm terminates. Note that J t

∗
= ∅

and thus Ht = c(Q), the center of Q. Furthermore, from line 16 of the algorithm,

we have κt∗ = 1−
∑t∗−1
j=1 κj , which implies

∑t∗

j=1 κj = 1. For t ∈ {1, . . . , t∗ − 1}, we
have

Ht = κ̃tq
t + (1− κ̃t)Ht+1 .

Iteratively applying this equality yields

H =

t∗−1∑
t=1

t−1∏
τ=1

(1− κ̃τ )κ̃tq
t +

t∗−1∏
τ=1

(1− κ̃τ )Ht∗ .

We also have that

1−
t∑

τ=1

κτ = 1−
t−1∑
τ=1

κτ − κt

= 1−
t−1∑
τ=1

κτ − κ̃t

(
1−

t−1∑
τ=1

κτ

)

= (1− κ̃t)

(
1−

t−1∑
τ=1

κτ

)
,
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where the second equality follows from line 11 of the algorithm. Applying this
equality iteratively yields

1−
t∑

τ=1

κτ =

t∏
τ=1

1− κ̃τ .

This gives us the following identity for κt:

κt = κ̃t

(
1−

t−1∑
τ=1

κτ

)
=

t−1∏
τ=1

(1− κ̃τ ) κ̃t .

So we have

H =

t∗−1∑
t=1

κtq
t +

(
1−

t∗−1∑
τ=1

)
Ht∗ =

t∗−1∑
t=1

κtq
t + κt∗q

t∗ =

t∗∑
t=1

κtq
t .

Now since vt = 2qt − v, we have qt = 1
2 (v + vt). From (17) and (19) we have

λ1 = 1
2 + 1

2κ1 and λt = 1
2κt, for t = 2, . . . , t∗. This yields:

H =

t∗∑
t=1

κtq
t =

t∗∑
t=1

κt
1

2
(v + vt)

=

t∗∑
t=1

κt
1

2
v +

t∗∑
t=1

κt
1

2
vt =

1

2
v +

1

2
κ1v +

t∗∑
t=2

1

2
κtv

t

= λ1v +

t∗∑
t=2

λtv
t =

t∗∑
t=1

λtv
t ,

where the second equality follows from line 7 of the algorithm. From (5.10), we
obtain that κ̃t is non-negative for all t ∈ {1, . . . , t∗}. Therefore, also κt ≥ 0 and∑t∗

t=1 λtv
t is indeed a correct convex combination.

Since none of the steps within each of at most n − 1 iterations takes more than
O(n) time, the total computation time of the algorithm is O(n2).



CHAPTER 6

Concluding remarks and open problems

In this thesis we have discussed several results that all share elements of scheduling
and game theory. Like always, answering one question can lead to asking another.
In this concluding chapter, we briefly put some of the results of this thesis in context
and sketch some of the open problems that arise naturally.

In Chapter 2 we show that the price of anarchy for scheduling jobs on related
machines, when using SPT as a local scheduling rule and with the total completion
time objective, lies between e/(e − 1) ≈ 1.58 and 2. In fact, we prove that the
pure price of anarchy is at least e/(e − 1), while the robust price of anarchy is at
most 2. The latter implies a bound of 2 for the price of anarchy for mixed Nash
equilibria, correlated equilibria and course correlated equilibria. We also show that
on identical machines, with identical jobs, there is in fact a gap between the pure
price of anarchy and the mixed price of anarchy. An interesting question for the
related machine scheduling game is what the true values of the price of anarchy for
the different equilibria actually are. Related to that, the question where the gap
lies, if any, is interesting on its own. It could be between pure Nash and mixed Nash
equilibria or somewhere else.

Furthermore, we have seen that SPT as a local scheduling rule is a local coordi-
nation mechanism, in the sense that it does not need prior information about all the
jobs to determine a schedule locally. We treat some other coordination mechanisms
for the related machine scheduling game in the end of Chapter 2. While we have not
been able to prove that SPT has a better worst case performances than any other
coordination mechanism, we conjecture that this is indeed the case.

In Chapter 3 we show that the mechanism design problem for scheduling jobs,
with two dimensional private data, on a single machine can be solved in polynomial
time for randomized mechanisms. We did this by using an extended LP formulation,
with linear ordering variables, which we showed can be compactified to a polynomial
size formulation. We also provide computational results, which establish a gap be-
tween IIA and non-IIA, DSIC and BNIC, and between deterministic and randomized
implementations. An interesting future path to follow is to worst-case analyze the
gaps between the solutions of these different implementations, which we conjecture
to be small. Another interesting direction is to analyze if the techniques we used
can be applied in other settings. Roughly spoken, this would have to be problems in
which the solution can be represented by a linear order. Moreover, it can be conjec-
tured that there are more problems for which a comparable compactification could
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be applied to yield polynomial size formulations at no loss of generality. Classifying
these problems, and thereby generalizing our compactification results would be an
interesting research direction.

Chapter 4 is motivated by two simple questions, namely, “Can we describe mech-
anisms in such a way that they are easy to interpret?” and “Can we design a method
that finds such mechanisms quickly, that is, computationally fast?” We think that
IIA mechanisms are the right answer. Particularly, because they can be compactly
represented by a list of all types of all agents. This representation is polynomial in
size, and a polynomial size representation is not known to exist in general. More-
over, it is easy to interpret and to use by participating agents. For computation
of an IIA mechanism, based on the list representation, we have seen that simple
neighborhoods for local search do a reasonable job, but converge (too) slowly. It
may not come as a big surprise that the heuristics we propose, which make use of
the full information of the type graph, and corresponding virtual weights perform
(much) better. This can be explained from the fact that they utilize more insight into
the nature of the problem, specifically the type graph and the shortest paths that
yield the minimal payments. However, our understanding of these heuristics is still
very limited. For instance, it is an interesting question if there are special cases for
which one can obtain results on convergence or performance guarantees. We think
that, generally, the design of local search or other practically efficient algorithms for
the design of mechanisms is an interesting direction, and our computational results
should be seen as a first step in that direction. We think that they clearly show the
viability of the approach, which combines two overarching goals. Namely, simplicity
of the computed mechanism and practical efficiency. Exploring such ideas for other
or more general mechanism design problems seems worthwhile. Another major open
question for the deterministic optimal mechanism design problem remains, namely
to settle its computational complexity. We believe it is computationally hard, yet a
formal proof is lacking.

In Chapter 5 we have proposed two different algorithms that can be used to
decompose a point in the scheduling polytope into a convex combination of vertices.
The first algorithm finds the intersection of a line with the scheduling polytope in
time O(n2 log n). This leads to a O(n3 log n) decomposition algorithm. The second
algorithm makes use of the fact that the scheduling polytope is a zonotope and
shows that a decomposition can be found even in time O(n2). The latter is a linear
time algorithm in the straightforward encoding of the output, which is a collection
of at most n vectors in Rn. It seems unlikely that an algorithm exists that can
do better. The obvious open question is if our algorithm can be generalized for
zonotopes in general. In order to do that, we would have to find computationally
efficient expressions both for the centers of symmetry and the faces of the resulting
barycentric subdivision, induced by these centers. While this is probably not possible
in general, it might be worthwhile to specify and analyze classes of zonotopes for
which it can be done.
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gramming and Combinatorial Optimization, volume 7801 of Lecture Notes in
Computer Science, pages 242–253. Springer, 2013.

[36] R. Hoeksma and M. Uetz. Optimal mechanism design for a sequencing prob-
lem with two dimensional private data. Invited for publication in Operations
Research. Under review, 2014.

[37] R. Hoeksma, B. Manthey, and M. Uetz. Decomposition algorithm for the single
machine scheduling polytope. In P. Fouilhoux, L. E. N. Gouveia, A. R. Mahjoub,
and V. T. Paschos, editors, Combinatorial Optimization, volume 8596 of Lecture
Notes in Computer Science, pages 280–291. Springer, 2014.



88 Bibliography

[38] R. Hoeksma, B. Manthey, and M. Uetz. Decomposition algorithm for the sin-
gle machine scheduling polytope. Submitted to Discrete Optimization. Under
review, 2014.

[39] R. Hoeksma, H. Nguyen, and M. Uetz. Fast and scalable mechanism design for
a single machine sequencing problem with private data. Manuscript, 2014.

[40] E. Horowitz and S. Sahni. Exact and approximate algorithms for scheduling
nonidentical processors. Journal of the ACM, 23(2):317–327, Apr. 1976.

[41] O. H. Ibarra and C. E. Kim. Heuristic algorithms for scheduling independent
tasks on nonidentical processors. Journal of the ACM, 24(2):280–289, 1977.

[42] N. Immorlica, L. E. Li, V. S. Mirrokni, and A. S. Schulz. Coordination mecha-
nisms for selfish scheduling. Theoretical Computer Science, 410(17):1589 – 1598,
2009. Internet and Network Economics.

[43] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly polynomial
time algorithm for minimizing submodular functions. Journal of the ACM, 48
(4):761–777, 2001.

[44] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller, J. W.
Thatcher, and J. D. Bohlinger, editors, Complexity of Computer Computations,
The IBM Research Symposia Series, pages 85–103. Springer, 1972.

[45] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. In C. Meinel and
S. Tison, editors, 16th Annual Symposium on Theoretical Aspects of Computer
Science, volume 1563 of Lecture Notes in Computer Science, pages 404–413.
Springer, 1999.

[46] C. W. Lee. Subdivisions and triangulations of polytopes. In Handbook of Dis-
crete and Computational Geometry, chapter 17. Chapman & Hall/CRC, 2nd
edition, 2004.

[47] A. M. Manelli and D. R. Vincent. Bayesian and dominant-strategy implementa-
tion in the independent private-values model. Econometrica, 78(6):1905–1938,
2010.

[48] A. Munier, M. Queyranne, and A. S. Schulz. Approximation bounds for a
general class of precedence constrained parallel machine scheduling problems. In
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Samenvatting

Mechanismen voor planningsspellen met egocentrische spelers

Planningsproblemen treden op wanneer meerdere taken moeten worden volbracht.
Machineplanningsproblemen zijn wiskundige modellen om dit soort planningsproble-
men te beschrijven. Hierbij moet een aantal taken op een aantal machines worden
verwerkt. Een oplossing van een machineplanningsprobleem noemt men een schema.

In dit proefschrift worden machineplanningsproblemen behandeld waarbij iedere
taak beheerd wordt door een speler. Deze spelers maken individueel keuzes die in-
vloed hebben op het uiteindelijke schema. Hierbij wordt aangenomen dat iedere
speler egocentrisch handelt naar zijn eigen doelfunctie. Onder deze aannames wor-
den planningsproblemen met behulp van speltheoretische technieken geanalyseerd.
In Hoofdstuk 1 worden de belangrijkste concepten rondom machineplanningsproble-
men, speltheorie en optimalisatieproblemen uitgelegd.

Hoofdstuk 2 geeft een analyse van de price of anarchy van planningsspellen op
basis van een klassiek planningsprobleem met machines die ieder een verschillende
snelheid kunnen hebben en taken die ieder een verschillende benodigde hoeveelheid
werk kunnen hebben. Hierbij kiezen de spelers op welke machine hun taak zal worden
verwerkt. Een planningsregel op de machines bepaalt vervolgens het uiteindelijke
schema. De focus ligt op planningsspellen waarbij de machines ieder de minste werk
eerst planningsregel gebruiken, verder komen ook een aantal andere planningsregels
aan bod. Het hoofdresultaat is een bovengrens van 2 voor de price of anarchy voor
de minste werk eerst regel. Dit betekent dat, als spelers zelf hun machine kiezen,
het resulterende schema kosten heeft die niet groter zijn dan twee maal de kosten
van het optimale schema. Er wordt ook een ondergrens gegeven van e/(e−1) ≈ 1.58
voor hetzelfde model.

In Hoofdstuk 3 en Hoofdstuk 4 worden planningsproblemen behandeld waarbij
sprake is van privé-informatie. In deze setting moeten een aantal taken verwerkt
worden op een enkele machine. Hierbij is zowel de benodigde hoeveelheid werk als
het gewicht van een taak privé aan de spelers. Deze privé-informatie wordt het type
genoemd. Onder de aanname dat spelers gecompenseerd moeten worden voor hun
wachttijd, en dat de kosten voor die wachttijd bepaald wordt door het gewicht van
de taak, is het doel om een mechanisme te vinden dat de totale gemaakte betalingen
aan de spelers minimaliseert. Een mechanisme bestaat hier uit een planningsregel
en een betalingsregel, die, op basis van het door de spelers gerapporteerde type, een
schema geven van de taken op de machine en een betaling aan iedere speler. Het
mechanisme moet er daarbij rekening mee houden dat de spelers, om hun eigen winst
te verhogen, niet altijd de waarheid hoeven te spreken over hun type.
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Hoofdstuk 3 behandelt de complexiteit van het probleem met privé-gewichten en
privé-werkhoeveelheden. Er wordt bewezen dat het vinden van een optimaal mecha-
nisme, waarbij loterijen over verschillende schema’s toegestaan zijn, mogelijk is in
polynomiale tijd. Dit resultaat wordt behaald met behulp van lineair programmeren
(LP). Hierbij wordt een exponentiëel grote LP beschrijving van een relaxatie van
het probleem succesvol vertaald naar een polynomiaal grote LP beschrijving, zonder
dat daarbij een verlies in prestatie optreedt. De uitkomst is een LP bechrijving die
zogenaamde tussenoplossingen bepaalt, in dit geval verwachte starttijden van de ta-
ken. De laatste stap is om deze tussenoplossingen te vertalen naar een loterij over
deterministische schema’s. Hiervoor is een decompositie van een punt in het plan-
ningspolytoop naar een convexe combinatie van hoekpunten nodig. Ook dit laatste
kan efficiënt gevonden worden.

Het in Hoofdstuk 3 beschreven resultaat beantwoordt de vraag wat de complexi-
teit is van het bepalen van een optimaal gerandomiseerd mechanisme. Het is echter
onduidelijk hoe de procedure gederandomiseerd kan worden. De complexiteit van
het bepalen van een optimaal deterministisch mechanisme is een nog open vraagstuk.
Het is zelfs niet duidelijk of dit probleem zich in de complexiteitsklasse NP bevindt.
Daarom behandelt Hoofdstuk 4 hetzelfde probleem als Hoofdstuk 3 met een ex-
tra voorwaarde, die onafhankelijkheid van irrelevante alternatieven wordt genoemd.
Deze voorwaarde vereist, in het geval van het enkele machine planningsprobleem,
dat de onderlinge volgorde van twee taken alleen afhankelijk is van de types die de
spelers behorende bij die taken rapporteren. Met deze extra voorwaarde bevindt
het probleem zich in de klasse NP, omdat ieder mechanisme dat aan de voorwaarde
voldoet kan worden beschreven als een lijst van de types van de taken. Er wordt aan-
getoond hoe dit laatste algoritmisch kan worden gebruikt en empirische resultaten
met behulp van local search en andere constructieve methoden worden gepresenteerd.
In de experimenten wordt aangetoond dat deze methodes inderdaad snel zijn en op-
lossingen vinden die dicht bij een optimaal mechanisme zitten. Dit is zelfs het geval
voor zeer grote instanties, die met de LP technieken uit Hoofdstuk 3 zeer moeilijk
op te lossen zijn.

In Hoofdstuk 5 wordt de decompositie van een gegeven punt in het planningspo-
lytoop naar een convexe combinatie van hoekpunten behandeld. Dit probleem komt
naar voren in de context van het ontwerp van mechanismen, zoals in Hoofdstuk 3,
maar het blijkt ook een interessant probleem op zich te zijn. Een combinatorisch
tijd O(n2 log n) algoritme wordt beschreven dat de doorsnede van een lijn en het
planningspolytoop bepaalt. Uit dit algoritme volgt een tijd O(n3 log n) algoritme
voor het decompositieprobleem. Het hoofdresultaat van dit hoofdstuk laat zien dat
een nog sneller algoritme mogelijk is. Namelijk, een algoritme dat in tijd O(n2) de
decompositie vindt. Hierbij wordt gebruik gemaakt van het feit dat het plannings-
polytoop een zogenaamd zonotope is.

Dit proefschrift eindigt in Hoofdstuk 6 met conclusies en een beschrijving van
mogelijke vervolgonderzoeken.



About the Author

Ruben Hoeksma was born on March 6, 1985, in Nijmegen, the Netherlands. He re-
ceived his VWO diploma, with profiel Natuur & Techniek and Natuur & Gezondheid,
in 2003 from R.S.G. Pantarijn in Wageningen. From 2003 to 2010 he studied Ap-
plied Mathematics at the University of Twente. He completed a bachelor thesis with
the title “Het Dynamische Speelsterkte Systeem” and a master thesis with the title
“Price of Anarchy for Machine Scheduling Games with Sum of Completion Times
Objective”. During his study he obtained a minor in Computer Science and did an
internship at Reggefiber, where he worked on optimizing the size of Area-POPs for
fiber-optic networks.

In October 2010 Ruben Hoeksma started his Ph.D. research under supervision of
Prof.dr. M.J. Uetz on the topic of optimal mechanism design for scheduling problems.
During his Ph.D. period he was part of the organizational committee of both the
Dutch Mathematical Congress (NMC) 2011 and the 12th Cologne Twente Workshop
(CTW 2013). Next to published papers in proceedings of WAOA 2011, IPCO 2013
and ISCO 2014, that are the basis for this thesis, he has a published graph theoretical
paper in the proceeding of WAOA 2013 on Approximability of Connected Factors.





CTIT Ph.D. Thesis Series  No. 14-342
ISSN: 1381-3617
ISBN: 978-90-365-3827-5




