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The classic prophet inequality states that, when faced with a finite sequence of non-negative
independent random variables, a gambler who knows their distribution and is allowed to stop the
sequence at any time, can obtain, in expectation, at least half as much reward as a prophet who
knows the values of each random variable and can choose the largest one. Following this classic
theorem from the 70s, many results have been obtained for several related optimal stopping
problems. Moreover, the recently uncovered connection between prophet inequalities and posted
price mechanisms, has given the area a new surge. We survey some new developments and highlight
some compelling open problems.
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1. INTRODUCTION

Optimal stopping theory is concerned with choosing the right time to take a partic-
ular action, so as to maximize the expected reward. The famous prophet inequality
is a key example of a result in optimal stopping. There, a gambler faces a finite
sequence of non-negative independent random variables X1i,...,X,, with known
distributions F; from which iteratively a prize is drawn. After seeing a prize, the
gambler can either accept the prize and the game ends, or reject the prize and
the next prize is presented to her. The classic result of Krengel and Sucheston,
and Garling [1977; 1978], states that the gambler can obtain at least half of the
expected reward that a prophet can make who knows the realizations of the prizes

Authors’  addresses: correa@uchile.cl, foncea@mit.edu, hoeksma@uni-bremen.de,
toosterw@mpi-inf.mpg.de, t.vredeveld@maastrichtuniversity.nl

ACM SIGecom Exchanges, Vol. 17, No. 1, November 2018, Pages 61-70



62 . J. Correa et al.

beforehand. That is, sup{E[X,] : ¢ stopping rule } > JE{sup,;<, X;}. Moreover,
Krengel and Sucheston also showed that this bound is best possible. Remarkably,
Samuel-Cahn [1984] showed that the bound of 1/2 can be obtained by a simple
threshold rule, which stops as soon as a prize is above a fixed threshold. The
existence of this 1/2-approximation is now known as the prophet inequality, and
following the above results there was a significant line of work studying this opti-
mality gap in different settings. We refer to the survey of Hill and Kertz [1992] for
more results on prophet inequalities.

In the past decade, problems related to the prophet inequality regained interest.
This was initiated by Hajiaghayi et al. [2007] and then Chawla et al. [2010], who
observed a close connection between prophet inequalities and online mechanisms.
In particular, Chawla et al. [2010] implicitly show that the problem of revenue max-
imization in posted price mechanisms can be reduced to that of finding stopping
rules of a related optimal stopping problem. In a posted price mechanism, a seller
holds a single item to sell to a set of customers, who have independent random
valuations for the item and arrive sequentially. Upon arrival of a customer, the
seller offers a price as a take-it-or-leave-it offer, and the customer either takes the
item at that price or simply leaves it. The goal of the seller is to find the prices
that maximize her expected revenue. Quite recently, Correa, Foncea, et al. [2019]
proved that the reverse direction also holds, thus establishing an equivalence be-
tween designing posted price mechanisms and finding stopping rules for optimal
stopping problems. The recent survey of Lucier [2017] is a good starting point to
understand the economic perspective of prophet inequalities.

Due to this regained interest, new variants of the prophet inequality setting have
been studied. These include problems when the gambler has to select more than
one item [Ezra et al. 2018], when the selected set has to satisfy combinatorial con-
straints [Kleinberg and Weinberg 2012; Diietting et al. 2017], when the underlying
distributions are unknown [Azar, Kleinberg, and Weinberg 2018], and when the
random variables arrive in continuous time [Allaart 2007; Kleinberg and Kleinberg
2018], among many others. In this letter however we focus on three variants of
the classic prophet inequality, namely, the order selection prophet inequality, the
prophet secretary version, and the 4.i.d. prophet inequality.

In the order selection prophet inequality, the gambler is allowed to select the order
in which she examines the random variables, and therefore it is natural to expect
that the constant 1/2 of the classic prophet inequality can be improved. Indeed,
Chawla et al. [2010] improve the bound to 1 — 1/e. In recent work, the bound was
further improved first by Azar, Chiplunkar, and Kaplan [2018] to 1 —1/e+1/400 =~
0.6346, then by Beyhaghi et al. [2018] to 1 — 1/e + 0.022 ~ 0.6543, and further to
1—-1/e+1/30 = 0.6655 by Correa, Saona, and Ziliotto [2019]. It is worth mentioning
that the bounds of Azar, Chiplunkar, and Kaplan [2018] and Correa, Saona, and
Ziliotto [2019] also apply to the prophet secretary version described next.

The prophet secretary problem is a nice combination of the prophet inequality
and the secretary problem. In this version, the random variables are shown to
the gambler in random order, as in the secretary problem. The problem was first
studied by Esfandiari et al. [2015] who found a bound of 1 — 1/e. Their algorithm
defines a nonincreasing sequence of n thresholds that only depend on the expecta-
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tion of the maximum of the random variables, and the gambler stops whenever the
currently sampled value surpasses the threshold corresponding to the current time.
A remarkable feature of this algorithm is that the decision to stop is anonymous
in the sense that it does not depend on the index of the sampled random variable.
Later, Correa et al. [2017] proved that the same factor of 1 — 1/e can be obtained
with a personalized but time invariant sequence of thresholds. In recent work,
Ehsani et al. [2018] show that the bound of 1 — 1/e can even be achieved using a
single threshold (randomization may be needed to break ties in some situations).
Shortly after the work of Ehsani et al., the mentioned works of Azar, Chiplunkar,
and Kaplan [2018] and Correa, Saona, and Ziliotto [2019] beat the bound of 1—1/e,
although the tight bound is still unknown.

Finally, we mention the i.i.d. prophet inequality, where the random variables are
identically distributed. Clearly, the optimal bound in this case is not smaller than in
both previous cases. For this problem, Hill and Kertz [1982] provided the family of
worst possible instances from which Kertz [1986] proved the largest possible bound
one could expect is 1/8 ~ 0.7451 (5 is defined later). Regarding algorithms, Hill
and Kertz also proved a bound of 1 — 1/e, which was improved by Abolhassani
et al. [2017] to 0.7380. Finally, Correa et al. [2017] proved that 1/ is a tight value.

In the remainder of this letter, we describe in more detail some of the results that
have been obtained for these three variants of the problem. For the sake of com-
pleteness, we start by providing an elegant proof of the classic prophet inequality
due to Kleinberg and Weinberg [2012].

2. THE PROPHET INEQUALITY

There are a number of proofs of the classic prophet inequality. Besides the original
one by Krengel and Sucheston, and Garling [1978], there is an inductive proof by
Hill and Kertz [1981], a proof based on the analysis of a single threshold rule by
Samuel-Cahn [1984], and a very short and elegant one that the authors recently
learned from Jason Hartline. Here, we have decided to include the proof due to
Kleinberg and Weinberg [2012], since it has an approximate stochastic dominance
flavor that will be useful when discussing the prophet secretary problem.

Consider a finite collection of nonnegative and independent random variables
Xy, ..., X, with known distributions Fi, ..., F},, respectively. We will look at a very
simple (and anonymous) stopping rule for the gambler, namely, pick a threshold
T and accept the first value above T. Let r be the index of the first sampled
value above the threshold. Thus, X, is the reward of the gambler while X :=
maxi<;<n X; is that of the prophet. We show that E(X,) > %IE(X)

The proof starts by defining p = ]P’(X > T') and noting that

D z<T,
P(Xr>x)2{(1p)P(X>x) 2>T.

Indeed, the first case is trivial since the gambler stops only when seeing a value of
at least T and the probability that this value exists equals p. On the other hand,
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for x > T, by conditioning on the stopping time and using the union bound, we get
P(X,>z) = > P(X;>a) [[P(X; <T)

i=1 j<i

> ( ZIF’X >z) > (1-pPX > z).
The latter inequality allows to lower bound the reward of the gambler as follows:!

) T o]
E(Xr):/o P(Xr>x)da:2/0 pdx+(1—p)/T P(X > z)dx

>pT+(1-p) (B -T) .

To conclude, observe that by either picking T' = E(X )/2 or by picking T so that
p = 1/2, the reward of the gambler is at least half that of the prophet.

The fact that the inequality is best possible follows easily from considering just
two random variables: X is deterministic and always equals 1, while X5 is 1/¢ with
probability € and 0 with probability 1 —e. Clearly, the best the gambler can get
(under any stopping rule) in expectation is 1, while the prophet gets e-(1/e)+1—¢ =
2 — e. The ratio thus goes to 1/2 as e goes to 0.

3. ORDER SELECTION

In this section, we discuss the order selection prophet inequality, in which the gam-
bler is allowed to determine the order in which she examines the random variables.
In the setting of posted price mechanisms, Chawla et al. [2010] showed that a
threshold rule achieves a bound of 1 — 1/e. We present this rule in the setting of
prophet inequalities, where, for simplicity reasons, we assume that the distributions
are continuous and strictly increasing.

First, we denote the probability that X, attains the maximum value by ¢; =
P(X; = X), we let 7; = F,"*(1 — ¢;) be the threshold that X; exceeds with proba-
bility exactly ¢;, and we let b; = E(X;|X; > F; '(1—¢;)) denote the expected value
of X; conditioned on the event that X, is at least 7;. Then, we sort the random
variables so that b; > by > ... > b, and accept the first variable X; that exceeds
its threshold 7;. Letting r again be the index of the first sampled value above its
threshold, the expected value obtained by this rule is equal to

i—1
E(XT) = Z H(]- - QJ QZ 7 Zcz% 7
% j=1

where ¢; = H;;ll(l — ¢;) is the probability that the sample of variable X; is con-
sidered. This probabﬂity is decreasing, i.e., ¢; > c2 > ... > ¢, As > .q; =12
we have that ), c¢;biqi > (30, ¢iqi)(3_; bigs). Hence, we can bound the expected

obtained value by E(X,) > (3, bi¢:)(3_; ¢igi)-

Recall that E(X) = [(°P(X > z)de < T+ [°P(X > z)dx
2Due to the assumptlon that the distributions are continuous and strictly increasing, the proba-
bility that two or more random variables simultaneously attain the maximum is 0.
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Since (X;|X; = X) is stochastically dominated by (X;|X; > 7;), we have that
E(X) =, ¢E(X;|X; = X) <>, bigi. On the other hand, we have that ) ¢;¢; =
1—TJ[;(1 —g;) > 1 —1/e. Therefore, combining these inequalities we obtain that

E(X,) > (1 —1/e)E(X), which shows the result.

Recently, the bound of 1 —1/e has been improved by Beyhaghi et al. [2018]. Like
Chawla et al. [2010], Beyhaghi et al. [2018] consider the setting of posted price
mechanisms. Whereas Chawla et al. [2010] compute for each customer a threshold
based on the probability of winning in an optimal mechanism, Beyhaghi et al. [2018]
takes the best of two threshold strategies. The first one computes a threshold for
each customer based on samples from the other customers, in such a way that the
probability of obtaining the good equals the probability of winning in an optimal
mechanism. The second strategy, on the other hand, takes a uniform threshold for
each customer. The idea behind such a best-of-two strategy is that for the instances
in which the sampling strategy performs bad, a uniform threshold strategy actually
performs well. To analyze the performance of their strategy, the authors use a
factor-revealing LP to obtain a bound of approximately 0.6543.

4. PROPHET SECRETARY

We now discuss the prophet secretary problem, which is a natural combination
of the prophet inequality problem and the well-known secretary problem. In this
setting, we assume that the random variables X;, ¢ = 1,...,n, arrive in an order o,
chosen uniformly at random among all permutations of [n] = {1,...,n}. A generic
threshold algorithm for this problem can be described as a set of thresholds 77,
with 4, j € [n], where the gambler stops the sequence at time j if sampling random
variable X; (i.e., if o(i) = j) and the sampled value is at least 77. We say that
the threshold algorithm is anonymous (as opposed to personalized) when the Tij ’s
do not depend on i, that is, Tij = le for all ¢, 7,k € [n], while on the other hand
we say that the threshold algorithm is time invariant if T,L-j ’s do not depend on j,
that is, Ti‘ = Tik for all 4,4,k € [n]. Furthermore, when all Tij 's are equal we say
that the algorithm is a single threshold algorithm. Finally, if the thresholds of an
algorithm can depend on the index of the random variable being sampled, on the
value sampled, and on the time, but not on the history that has been observed, the
algorithm is called nonadaptive.

This problem was introduced by Esfandiari et al. [2015], who started by showing
that a single threshold cannot achieve a better bound than % Then they exhibit
an anonymous threshold rule that yields a bound of 1 — 1/e ~ 0.6321. The first
fact follows from the following simple example. Consider n random variables that
arrive in random order, n — 1 of them are deterministic and always give 1, while
the other gives n with probability 1/n and zero with probability 1 — 1/n. Clearly,
E(X)=n-1/n+1-(1—1/n)~ 2. Now fix a threshold 7. If T < 1, the gambler
(who uses T' as sinlge threshold) gets n with probability 1/n2, and 1 otherwise,
so she gets approximately 1. If on the contrary T > 1 the gambler gets n with
probability 1/n, so in total she gets 1.

The bound of 1 — 1/e can also be achieved by a personalized but time invariant
threshold algorithm [Correa et al. 2017]. The cornerstone of the analysis is the
so-called Bernoulli Selection Lemma, which may be of independent interest. The
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result states that given a set of non-homogeneous independent Bernoulli random
variables with associated prizes, there is a subset of variables so that the expected
average prize of the successes within the subset is at least a factor 1 — 1/e of the
expected maximum prize over all random variables.

Surprisingly, Ehsani et al. [2018] show that the same bound of 1—1/e can even be
obtained with a single threshold. This may appear to contradict the upper bound
bound of 1 of Esfandiari et al. [2015], however, the subtle issue is that they allow
to break ties at random. In particular, if in the previous example the gambler sets
T = 1 and if there is a tie, she stops with probability 1/n. We can see that the
probability that the gambler gets a nonzero value is 1 — (1 — 1/n)" ~ 1 — 1/e.
Also, the expected reward of the gambler given that she got a nonzero value can
be computed as n-1/n +1- (1 —1/n) ~ 2. Therefore, the expected reward of the
gambler is approximately 2(1 — 1/e) = (1 — 1/e)E(X). In general, if one can show
a bound for a single threshold algorithm in the case of continuous distributions, it
is straightforward to obtain the same bound for general distributions with a single
threshold, but allowing to break ties at random.

To wrap-up this section, we provide a proof sketch of this single threshold result
of Ehsani et al. [2018] for continuous distributions. In their algorithm, the single
threshold T is simply defined as the value such that ]P’(X < T) = 1/e. The proof
we present here is due to Correa, Saona, and Ziliotto [2019] and uses the idea of
approximate stochastic dominance. Actually, they showed a stronger result, namely
that P(X, > z) > (1 — 1/e)P(X > ) (where r is the random time at which the
algorithm for the gambler stops). The key insight of the proof is to show that if
X; > T, then the gambler will stop with that random variable with probability at
least 1 — 1/e, i.e., P(r = 0(4)]X; > T) > 1 — 1/e. The intuition comes from the
fact that it is unlikely that many other X;’s are also above the threshold, though
a formal proof of this statement follows from the theory of Schur-convex functions.
With this result at hand, the proof follows quite simply by conditioning on the
stopping time and using the union bound:

P(X, >z) = ZP(Xi > zlr =o0(1)P(r =0(i))

>£PX >x|r—a())(1—i>]P’(Xi>T)

( )ZPXNS X1>T)z<1i>P(X>z).

Here we assumed that x > T, for z < T the statement is actually trivial.

It is worth noting that the bound of 1—1/e is best possible for single threshold al-
gorithms (the example above is actually tight), however, it can be further improved
for more general algorithms. The first to break the barrier were Azar, Chiplunkar,
and Kaplan [2018] who improved the bound to 1 — 1/e 4+ 1/400 = 0.6346, through
an algorithm that relies on subtle case distinctions. Quite recently, Correa, Saona,
and Ziliotto [2019] further improved the bound to 0.668, following ideas similar to
those in the previous proof. They also prove an upper bound of v/3 — 1 ~ 0.7321
on any nonadaptive algorithm.
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5. THE I.I.D. PROPHET INEQUALITY

Finally, we discuss the situation in which the random variables Xi,...,X,, are
independent and identically distributed according to F'. For this variant, Hill and
Kertz [1982] characterized the worst instances as a function of n, however, they
could not determine the constant that these instances imply. Kertz [1986] proved
that these instances yield an upper bound of 1/8 & 0.7451, where § is the unique
value solving fol mdy = 1. On the other hand, [Hill and Kertz 1982]
also proved a lower bound of 1 — 1/e, which was recently improved to 0.7380 (for
large enough n) by [Abolhassani et al. 2017]. Finally, Correa et al. [2017] prove
that 1/8 is the tight value, thus resolving the i.i.d. prophet inequality.

The idea behind the Correa et al. [2017] algorithm is to use a quantile stopping
rule. Rather than directly constructing a threshold rule, they find a collection of
acceptance probabilities ¢ < --- < ¢, which are independent of the instance (and
only depend on n). Then, these ¢;’s are naturally turned into thresholds by defining
7, = F71(1 — ¢;), so that the algorithm stops at time i if the sampled value X;
beats 7;. Again, we will denote the random time at which the algorithm for the
gambler stops by r.

The key step of the algorithm is therefore the choice of ¢1, ..., q,. This choice is
driven by two simple observations. First, note that if we use quantile ¢ at any given
point in time, the expected reward is given by R(q) = E(X|X > F71(1 —q))q =
fo (1 — #)df, and this allows to express the expected reward of the prophet
as BE(X) = nfo n —1)(1 — ¢)"2R(q)dg. Second, note that 1(q) = (n — 1)(1 —
q)"~? integrates to 1 in the interval [0,1], so that the reward of the prophet is
the expectation of the function nR(q), when ¢ is distributed according to ¥(q) =
1—(1—¢)™ 1.3 It is thus natural to choose the ¢;’s as follows. Partition the interval
A =[0,1] into n intervals A; = [g;,_1,¢&;], and draw ¢; at random from the interval

»(@)

A; according to probability density function et where +; is the normalization

equal to v; = deA, ¥(q)dg. With this choice the reward of the gambler can be
expressed as

n i—1
») =2 E(R(@)) [TEQ - g)
" T @ - a)dg
_;/&l(n—m—q) R(g)dq o

j=1"7i
= lei /Ei (n—1)(1-¢q)" *R(q)dq,

€i—1

where p; = ,Yi and p;1q1 = ’n+1 fel ) —q)dg fori=1,...,n—1. If we finally

choose the ¢;’s so that p; =--- = p,, we have that E(X,) = -—E(X).

nyi

The final part of the proof is to show that this choice of ; implies that ny; < .

3 Already at this point we can use the concavity of R(q) and Jensen’s inequality to deduce that
E(X) <nR(1/n), since 1/n is the expectation of a random variable with distribution ¥. Thus by
setting ¢; = 1/n, for all 4, the gambler gets a reward of > 7", LR(1/n)(1—1/n)" > (1 —1/e)E(X).
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Although straightforward, the analysis is intricate; the imposed condition p; =
-+ = py translates into a recursion for €;’s which turns out to be quite hard to
solve explicitly. However it can be analyzed tightly by approximating it through
a differential equation, leading to the bound nvy; < 5. We refer the reader to the
work of Correa et al. [2017] for the details.

We remark once again that the choice of ¢;’s only depend on the choice of ¢;’s,
which in turn only depend on n (note that i does not depend on F') and thus
the algorithm just described is blind, in that the quantiles do not depend on the
particular instance at hand. One may imagine that a similar approach would work
for the more general prophet secretary problem. Indeed, Correa, Saona, and Zil-
iotto [2019] take this path and show that blind quantile strategies lead to a bound
of 0.668 for prophet secretary, however they also show an upper bound of 0.675 on
the performance of any blind quantile strategy. Therefore, to get closer to 0.7451
in prophet secretary one needs to go beyond the approach for the i.i.d. case.

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this letter, we considered several variants of the prophet inequality problem. In
the classic setting the obtained bounds, both for general and for i.i.d. distributions,
have been shown to be tight. However, for the order selection variant and the
prophet secretary problem, there remains a gap between the proved lower and
upper bounds. A remarkable open problem in the area is to find some separation
between the optimal constant for the three variants discussed in this letter, or
rather to show that they all coincide. Obviously, the optimal constant for the i.i.d.
prophet inequality is larger than or equal to that for order selection, which in turn
is larger than or equal to that for prophet secretary. Interestingly, the upper bound
of 0.7451 obtained by Hill and Kertz [1982] is still the smallest upper bound known
for all three problems. In particular, an interesting question is to determine the
potential benefits of using adaptivity. In this context, a nonadaptive algorithm is
an algorithm whose decision to stop can depend on the index of the random variable
being sampled, on the value sampled, and on the time, but not on the history that
has been observed. Clearly, adaptivity does not help in the i.i.d. prophet inequality,
and moreover, Hill [1983] shows that it neither does in order selection prophet
inequality. However, adaptivity does help in the prophet secretary problem. For
this latter problem it is known that no nonadaptive algorithm for the gambler can
achieve a constant better than 0.7320 [Correa, Saona, and Ziliotto 2019]. However,
no upper bound better than that of the i.i.d. case is known for adaptive algorithms.

Another interesting research direction is to investigate how much knowledge of the
distributions is required. The proof described in Section 2 uses full knowledge of the
distributions, while Azar, Kleinberg, and Weinberg [2018] only require one sample
of each distribution. On the other hand, Azar, Chiplunkar, and Kaplan [2018] only
need to know E(X). This raises the question what bounds can be obtained when
knowing only the first k¥ moments of the maximum, or the first £ moments of the
random variables with or without any knowledge of the moments of the maximum.
Finally, there are many extensions to combinatorial settings in which more than
one random variable can be selected.
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