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Abstract
The General Scheduling Problem (GSP) generalizes scheduling problems with sum of cost ob-
jectives such as weighted flow time and weighted tardiness. Given a set of jobs with processing
times, release dates, and job dependent cost functions, we seek to find a minimum cost pree-
mptive schedule on a single machine. The best known algorithm for this problem and also for
weighted flow time/tardiness is an O(log logP )-approximation (where P denotes the range of the
job processing times), while the best lower bound shows only strong NP-hardness. When release
dates are identical there is also a gap: the problem remains strongly NP-hard and the best known
approximation algorithm has a ratio of e+ ε (running in quasi-polynomial time). We reduce the
latter gap by giving a QPTAS if the numbers in the input are quasi-polynomially bounded, rul-
ing out the existence of an APX-hardness proof unless NP ⊆ DTIME(2polylog(n)). Our techniques
are based on the QPTAS known for the UFP-Cover problem, a particular case of GSP where
we must pick a subset of intervals (jobs) on the real line with associated heights and costs. If
an interval is selected, its height will help cover a given demand on any point contained within
the interval. We reduce our problem to a generalization of UFP-Cover and use a sophisticated
divide-and-conquer procedure with interdependent non-symmetric subproblems.

We also present a pseudo-polynomial time approximation scheme for two variants of UFP-
Cover. For the case of agreeable intervals we give an algorithm based on a new dynamic pro-
gramming approach which might be useful for other problems of this type. The second one is a
resource augmentation setting where we are allowed to slightly enlarge each interval.
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31:2 A QPTAS for the General Scheduling Problem with Identical Release Dates

1 Introduction

The General Scheduling Problem (GSP) considers scheduling jobs with job dependent cost
functions in a very general setting. We are given a single machine and a set of jobs J ,
where each job j has a release date ρj ∈ N, a processing time pj ∈ N, and a cost function
fj : N→ N0 ∪ {∞} that is non-decreasing. The goal is to find a preemptive schedule on the
machine that minimizes the total cost

∑
j∈J fj(Cj), where Cj is the completion time of job

j in the computed schedule.
With arbitrary cost functions for the jobs, we have a lot of modeling power, which

we believe makes the problem worth studying. In fact, we can model many scheduling
objectives that were also studied separately, such as weighted flow time (each job j has
weight wj and fj(Cj) = wj(Cj − ρj)) or weighted tardiness (each job j additionally has
a deadline dj and fj(Cj) = max{wj(Cj − dj), 0}). The best known result for GSP is a
O(log logP )-approximation [5] (where P denotes the range of the processing time) and
no better polynomial time results are known for any of the mentioned special cases. The
best known lower bound shows only strong NP-hardness [13] (even in the case without
release dates), thus leaving a large gap compared to the O(log logP )-approximation. Even
if all jobs have identical release dates there is a gap in our understanding: the best known
results are a (4 + ε)-approximation in polynomial time [11] and an (e + ε)-approximation
in quasi-polynomial time [12]. It is open whether this case is APX-hard. In this paper we
settle the latter question: for GSP with identical release dates we present a QPTAS, i.e., a
(1 + ε)-approximation algorithm with a running time of nlog(n)O(1) for any constant ε > 0.
This implies that the problem is not APX-hard, unless NP ⊆ DTIME(2poly(logn)).

In this extended abstract, many proofs and details had to be omitted due to space
constraints.

1.1 General Scheduling Problem and UFP-Cover
For identical release dates, GSP is purely a sequencing problem, since a solution cannot
profit from preempting jobs or leaving idle-time. Assuming that ρj = 0 for each j, the whole
schedule finishes at time T :=

∑
j pj . Using the viewpoint from [5], we can see this problem

as a covering problem. In any feasible solution, for each time t, we need that the total
processing time of jobs finishing after time t is at least Dt := T − t. We can think of Dt as
the demand of time point t. Now, we rephrase the problem as follows. For each job j select
a completion time Cj such that for each t′ the total processing time of the jobs unfinished at
time t′ is at least Dt′ . We say that job j is unfinished or active during the interval [0, Cj).
An easy proof shows that, for each such choice of completion times, there exists a schedule
in which every job j is finished by its completion time Cj [5].

An important special case arises when the cost function fj of each job j attains only
one of three values: zero in an interval [0, rj) (rj should not to be confused with the release
date ρj = 0), a job dependent value cj in an interval [rj , dj), and ∞ in [dj ,∞). In this
setting, we can assume that the optimal solution selects either [0, rj) or [0, dj) to be the
interval during which j is active. Moreover, we can simply remove pj from the demand
at each time [0, rj), which leaves as the only decision for j whether we pay cj and cover
pj units of demand during [rj , dj), or not. Thus, this special case can be reduced to the
Unsplittable Flow on a Path (UFP)-Cover problem. In UFP-Cover, we are given a set of
jobs J , each job described by a cost cj , a size pj , and the interval [rj , dj) and, for each time
point t, a demand Dt. The goal is to select a subset J ′ of the jobs such that, for each time
point t, the total size of the jobs j ∈ J ′ with t ∈ [rj , dj) is at least Dt. Note that we do not
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I
tM

Figure 1 The bold curve denotes the size profile of job parts selected by the optimal solution that
cross tM . The blue step function shows an underestimating profile that approximates the former
curve. The height of the green area (subprofile) is an (under-)estimation of the size of job parts
in the optimal solution for all jobs that have a part covering tM and whose right end point lies at
interval I (i.e., the fourth step of the blue function).

require that the demand function Dt is non-increasing (but by adding jobs of zero cost one
could assume this w.l.o.g.). The best known results for UFP-Cover are a 4-approximation in
polynomial time [6, 8] and a QPTAS which requires the input data to be quasi-polynomially
bounded [12]. Since there is the QPTAS, it is natural to conjecture that also a PTAS
exists. In this paper, we make progress towards this by presenting pseudo-polynomial time
approximation schemes for the settings of agreeable intervals, i.e., when for any two jobs j, j′
we have that rj ≤ rj′ ⇒ dj ≤ dj′ , and for a resource augmentation setting, where we are
allowed to increase each given interval [rj , dj) by a factor of 1 + µ for an arbitrarily small
µ > 0 while the compared optimal solution cannot do this.

1.2 Our Contribution
Our first result is a QPTAS for GSP with identical release dates, assuming that all numbers in
the input are quasi-polynomially bounded. We reduce GSP to a generalization of UFP-Cover.
This generalized UFP-Cover problem is defined like regular UFP-Cover, but now each job
j consists of K parts. More precisely, for each job j we are given an integral starting time
rj , a size pj , up to K many integral end times rj < d1

j < d2
j < ... < dKj , and corresponding

accumulated costs c1j , c2j , ..., cKj . Jobs can be selected or not. If a job is not selected its cost
is zero and it does not contribute to cover any demand. If job j is selected, we can choose to
extend it up to any part i ∈ {1, . . . ,K}, which means that then it is active during [rj , dij).
In this case we pay cij for this job while it contributes to cover pj units of demand to each
time within [rj , dij). The objective is to cover all demand Dt while minimizing the total cost.
Notice that if K = 1 then we recover the UFP-Cover problem. On the other hand, we show
that by losing a factor of 1 + ε in the objective we can assume that K = 1/ε2.

Starting with this, we extend the known QPTAS for UFP-Cover, which works as follows.
We consider the jobs crossing the middle time point tM ; denote them by JM . They are
split into (logn)Oε(1) groups according to size and cost. For each group and each time t, we
consider the total size of the jobs in the group crossing time point t in the optimal solution.
This yields a function that is increasing from time 0 to time tM , and decreasing from tM
to T . This function can be underestimated by a step-function (profile) with O(1/δ) (where
δ = Oε(1)) many steps (see the blue curve in Figure 1). One first guesses the step-function
and then selects jobs that cover the demand given by this step-function greedily (which
is essentially optimal). There is still some error due to the fact that the step-function
underestimates the true amount that jobs in OPT ∩ TM cover on each time point. In the
case of regular UFP-Cover, one can compensate this error by greedily selecting jobs that
were not yet selected.

ICALP 2017
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Job Set

Solution 1

Solution 2
tMt1 t2

(a) Picking the blue part of the top job rules out
Solution 1, while not picking it rules out Solution 2.
Note that both solutions are incomparable since on
t1 and t2 they cover different amounts of demand.

tM

(b) Assume that the optimal solution selects
all blue job parts (crossing tM ). Then there
are still an exponential number of options for
which jobs we should also select the green
parts. Thus, we cannot take this decision
immediately.

Figure 2 Locally Pareto-optimal choices.

In contrast to regular UFP-Cover, this approach fails for our generalization. We can
think of each job as a collection of parts [rj , d1

j), [d1
j , d

2
j), ..., [dK−1

j , dKj ). The step function
can only be guessed for the part that actually covers tM . Yet, if we select that part, we need
to pick all preceding parts of that job as well. This influences our options on the left side of
tM . On the other hand, if we do not pick the part that covers tM of a certain job, succeeding
parts of that job cannot be picked. This influences our options on the right side of tM (see
Figure 2a).

To address these issues we guess more fine-grained underestimating profiles. We group
the jobs further such that for each job in a group the same part crosses tM . Assume that for
the jobs in the considered group their respective i-th part, [di−1

j , dij), covers tM . We guess a
right underestimating profile that estimates the total size covered to the right of tM by these
i-th parts that are selected by OPT. This profile partitions the jobs into subgroups according
to the “step” of the profile in which the i-th part ends (see the green curve in Figure 1).
For each of these constantly many groups we create a subprofile which underestimates the
additional demand covered by the (i+ 1)-th parts of those jobs in OPT, i.e., by the intervals
[dij , di+1

j ). We continue recursively and create underestimating subprofiles for all parts of the
jobs, which gives a tree structure. We refer to this construction as tree profiling.

The tree profiling yields constantly many subgroups of jobs. For each of them we guess
the number of jobs that the optimal solution selects (recall that the jobs in the same group
have essentially the same size and cost). Then we recurse only on the left subproblem in
which we want to cover the demand of the interval [0, tM ) subject to the new constraint
that from each subgroup we select the previously guessed number of jobs. Once we have
a solution to this left subproblem, ideally we would like to decide how many parts of the
jobs crossing tM we select, i.e., the parts laying in the interval [tM + 1, T ). Unfortunately,
there can still be very many Pareto-optimal choices for this (see Figure 2b for an example).
This can even happen when taking into account the information from the tree profiling.
Instead, at this point we select for each job only the part that crosses tM and we decide
later about the additional parts we want to select. We recurse on the interval [tM + 1, T )
and the remaining problem is to cover the demand of the interval [tM + 1, T ) while we can
select additional parts from the jobs that we selected already. In each subproblem we recurse
on the respective middle time point, which yields a recursion depth of O(logn) and thus
quasi-polynomial running time overall.
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UFP-Cover for agreeable deadlines. Our second result is a pseudo-polynomial time (1+ ε)-
approximation for UFP-Cover with agreeable deadlines. We first present an exact pseudo-
polynomial time dynamic program (DP) for the case that the interval of each job is of the
form [0, dj) or [rj , T ), i.e., rj = 0 or dj = T . Then, we generalize this to the case where
there are 1/ε intervals [T0, T1), [T1, T2), ..., [T1/ε−1, T1/ε) and for each job j we have that
[rj , dj) ∩ [T`, T`+1) equals either [rj , T`+1) or [T`, dj). Using the fact that the job deadlines
are agreeable we can show that the time axis can be partitioned into a possibly superconstant
number of intervals [T`, T`+1) with this property. By losing only a factor 1+ε in the objective,
we can split those into groups of at most 1/ε consecutive intervals, each of which then yields
an independent subinstance of our problem on which we apply our DP. The backbone of
the latter is that the agreeable-deadlines property yields an ordering to process the jobs
such that we need to remember only little information about the previously chosen jobs. We
believe that this ordering and the resulting DP technique might be useful for other problems
on agreeable intervals as well. Note that the opposite case where the job intervals form a
laminar family has a simple exact DP. Thus, we can now handle the two “extreme” cases of
the problem.

PTAS under resource augmentation. For UFP-Cover we present a pseudopolynomial time
PTAS for the setting where we can enlarge each job interval [rj , dj) by a factor 1 + µ for
some µ > 0, i.e., replace it by the interval [rj − µ

2 (dj − rj), dj + µ
2 (dj − rj)), while the

compared optimal solution does not have this privilege. We use this resource augmentation
to discretize the begin and end points of the intervals of the jobs. As in a similar result for
UFP-packing [3], we group the jobs by the lengths of their intervals. In UFP-packing, the
grouping can be done such that two jobs in different groups have intervals whose lengths
differ by a large factor. Then each group can be handled almost independently. In our case
we cannot establish such a property, since it requires the removal of some jobs from the
input, which in turn may make our instance of UFP-Cover infeasible. Instead, our DP needs
to transfer a lot of information between groups. The key for our approach is to prove that
for each group it is sufficient to remember information from one previous group.

1.3 Other related work

The General Scheduling Problem can model a vast class of well-studied objective functions.
The known O(log logP )-approximation for it [5], is even the best known result for several im-
portant special cases. For example, for the weighted flow time objective there were previously
algorithms known with approximation ratios of O(log2 P ), O(logW ) and O(lognP ) [4, 10],
where P and W denote the ranges of the job processing times and weights, respectively. Also,
there is a QPTAS with a running time of nOε(logP logW ) [9].

For GSP with identical release dates the first constant factor approximation is due to
Bansal and Pruhs [5] and yields an approximation ratio of 16. This was later improved
to 4 + ε [11] by adapting ideas from the 4-approximation algorithm for UFP-Cover [6, 8].
For UFP-Cover this is the best known polynomial time result, while for quasi-polynomially
bounded input numbers the problem even admits a QPTAS, implying a quasi-polynomial
time (e+ ε)-approximation for GSP with identical release dates [12]. The used techniques
are based on a QPTAS for the packing version of UFP [3]. For the latter algorithm, one can
even remove the assumption that the input data is quasi-polynomially bounded [7]. The best
known polynomial time results for UFP-packing are a (2 + ε)-approximation [1] and PTASs
for some special cases [7].

ICALP 2017
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2 QPTAS for GSP with identical release dates

We present our QPTAS for the General Scheduling Problem with identical release dates.
Throughout this section we assume that all input numbers are quasi-polynomially bounded
integers, and that we are given an ε > 0 such that 1/ε is an integer. We assume as well that
we are given the number fmax = max{fj(t) : fj(t) 6=∞, t ≤ T} as part of the input. First,
we simplify the input such that the job cost functions attain only values that are powers of
1 + ε or ∞.

I Lemma 1. By losing a factor 1 + ε in the objective, we can assume for each job j and
each t that fj(t) ∈ {(1 + ε)k|k ∈ N0} ∪ {0,∞} and that fj is a non-decreasing step function
with Oε(poly(logn)) steps. We can further assume that each fj is given explicitly, even if in
the input it was given via an oracle.

As in [5] we interpret GSP as a covering problem. Given a demand Dt for each interval
[t, t + 1) and a set of jobs J . Each job j ∈ J is characterized by a size pj , a set of parts
with corresponding intervals I1

j = [t(0)
j , t

(1)
j ), I2

j = [t(1)
j , t

(2)
j ), ... for t(0)

j ≤ t
(1)
j ≤ t

(2)
j ≤ . . .

and cost values 0 ≤ c1j < c2j < . . .. The goal is to select for each job j a prefix of its parts,
i.e., a value σ(j) ∈ N0 such that all parts k ≤ σ(j) are selected. The cost for j is then cσ(j)

j .
Possibly σ(j) = 0 and then no part is selected, and thus we define c0j := 0 for each job j. For
a solution σ we say that a job j is active at time t if t ∈ ∪σ(j)

i=1 I
i
j . We require that for each t

the total size of the jobs active at t is at least Dt, i.e.,
∑
j:t∈∪σ(j)

i=1 I
i
j

pj ≥ Dt. The objective

is to minimize the total cost
∑
j∈J c

σ(j)
j . We call this problem the generalized UFP-Cover

problem (regular UFP-Cover is the special case where each job has only one part).
Using a similar argumentation as in [5] we can prove the following lemma.

I Lemma 2. For any instance of GSP with identical release dates in which each cost function
attains only polynomially many different values, we can construct in polynomial time an
instance of generalized UFP-Cover such that approximations are preserved, i.e., for any
α ≥ 1 an α-approximate solution for the generalized UFP-Cover instance can be transformed
in polynomial time to an α-approximate solution for the GSP instance.

We apply Lemma 2 to reduce our given GSP instance to an instance of generalized UFP-Cover.
Next, we ensure that each job has only 1/ε2 parts.

I Lemma 3. By losing a factor 1 + ε in the objective, we can assume that each job has at
most K := 1/ε2 many parts, each value ckj is a power of 1 + ε, and that ck+1

j = (1 + ε)ckj for
each k.

Assume w.l.o.g. that there is a value T ≤ poly(n) such that Ikj ⊆ [0, T ) for each job j and
each part k. Our algorithm is recursive. Let tM = dT2 e be the middle point of the interval
[0, T ). The overall idea is to take a decision about the parts of jobs j that cover [tM , tM + 1),
i.e., such that tM ∈ Ikj for some k, and then recursively decide on all job parts k′ with
Ik

′

j′ ⊆ [0, tM ) (left subproblem) and k′′ with Ik′′

j′′ ⊆ [tM + 1, T ) (right subproblem).

2.1 Tree profiling and grouping of jobs

Let JM ⊆ J denote the set of jobs j having a part k with tM ∈ Ikj . We partition JM into a
poly-logarithmic number of subsets according to their respective size, by the index of the
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J
(k,γ,`)
M

J
(k,γ,`,1)
M

. . .

. . . J
(k,γ,`,i)
M

. . . J
(k,γ,`,i,i′)
M

. . .

. . .

(a) Example of a tree G(k,γ,`).

tM Ai Ai,i′

. . .

. . .

. . .

. . .

Part k Part k + 1

(b) Two jobs from group Jk,γ,`,i,i
′

M .

Figure 3 Recursive partitioning of the jobs.

part that covers tM , and by the cost of the latter. Formally, for numbers k, γ and λ we
define sets

J
(k,γ,λ)
M := {j ∈ JM : tM ∈ Ikj , ckj = (1 + ε)γ , and (1 + ε)λ ≤ pj < (1 + ε)λ+1}.

Consider one such group J (k,γ,λ)
M . We want to partition it further. Let δ = δ(ε) be a small

enough constant. First, we want to partition it into O(1/δ) subgroups J (k,γ,λ,i)
M such that:

(i) OPT selects essentially the same number of jobs from each of these subgroups, and (ii)
the k-th part of each job in the subgroup has a “similar” endpoint. Formally, we ensure the
latter by partitioning the interval [tM , T ) into subintervals A1, A2, ... such that for each job j
of a subgroup J (k,γ,λ,i)

M the k-th part ends in Ai (see Figure 3). Let J̄ (k,γ,λ)
M be the set of jobs

j ∈ J (k,γ,λ)
M ∩ OPT that OPT extends up to part k or further, i.e., for which OPT selects

parts I1
j , ..., I

k
j and possibly more. To define our partition, we see that the respective k-th

parts of the jobs in J̄ (k,γ,λ)
M cover some demand at each time point t, given by the function

f̄k(t) :=
∑
j∈J̄(k,γ,λ)

M
:t∈Ik

j

pj . Observe that f̄k is non-decreasing on [0, tM ) and non-increasing

on [tM , T ). Ideally, we would like to guess f̄k so that we have some idea about how much the
k-th parts of the jobs in J (k,γ,λ)

M need to cover. Unfortunately, there are too many options
on how f̄k might look. Therefore, we guess

∣∣∣J̄ (k,γ,λ)
M

∣∣∣ and a simpler underestimating function
f̃k that approximates f̄k sufficiently well, as given by the following lemma (see Figure 1).
For our later purposes we need this function only on the interval [tM , T ).

I Lemma 4. There exists a function f̃k : [tM , T ) → {0, 1, ...,
∑
j∈J pj} such that f̃k is a

step-function with at most O(1/δ) many steps, f̃k(t) ≤ f̄k(t) ≤ f̃k(t)+δ ·
∣∣∣J̄ (k,γ,λ)
M

∣∣∣ · (1+ ε)λ+1,
and f̃ is non-increasing.

We use the function f̃k to split the set J (k,γ,λ)
M into subgroups, according to where the part

k of each job j ∈ J
(k,γ,λ)
M ends. Let A1, A2, ... denote a partition of [tM , T ) into O(1/δ)

subintervals such that on each subinterval Ai the function f̃k is constant. For each such
interval Ai we define J (k,γ,λ,i)

M ⊆ J (k,γ,λ)
M to be the jobs j ∈ J (k,γ,λ)

M such that (t(k)
j − 1) ∈ Ai

(recall that Ikj = [t(k−1)
j , t

(k)
j )).

Subprofiles. It is convenient to think of a tree where J (k,γ,λ)
M forms the root node and the

sets J (k,γ,λ,i)
M form the children of J (k,γ,λ)

M . We take each such group J (k,γ,λ,i)
M and partition

it further into O(1/δ) smaller subgroups J (k,γ,λ,i,1)
M , J

(k,γ,λ,i,2)
M , .... In the tree view, we can

think of appending those as children to the node for the group J (k,γ,λ,i)
M , see Figure 3. For

ICALP 2017
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the subgroups, as before our goal is that OPT selects essentially the same number of jobs
from each subgroup J (k,γ,λ,i,i′)

M and that for each such subgroup the (k + 1)-th part has a
“similar” end point.

Recall that when we partitioned J (k,γ,λ)
M we estimated what the k-th part of the jobs in

J
(k,γ,λ)
M ∩OPT cover (via the function f̃k) and obtained a grouping according to the steps of
f̃k. For the finer partitioning of J (k,γ,λ,i)

M we consider the jobs in J (k,γ,λ,i)
M for which OPT

selects also the (k + 1)-th part (and thus also the k-th part). Denote that set as J̄ (k,γ,λ,i)
M .

We define the function f̄k,i(t) that models how much the k-th and the (k+ 1)-th parts of the
jobs in J̄ (k,γ,λ,i)

M ∩ OPT cover. Formally, f̄k,i(t) :=
∑
j∈J̄(k,γ,λ,i)

M
:t∈Ik

j
∪Ik+1
j

pj . We guess an

underestimating function f̃k,i with the same properties as the function f̃k as given in Lemma 4,
i.e., f̃k,i has O(1/δ) many steps, f̃k,i(t) ≤ f̄k,i(t) ≤ f̃k,i(t) + O(δ) · |J̄ (k,γ,λ,i)

M | · (1 + ε)λ+1,
and f̃k,i is non-increasing. Like before, the steps of f̃k,i yield a partition of [tM , T ) into
O(1/δ) many subintervals Ai,1, Ai,2, ... such that f̃k,i is constant in each of them. Each
such subinterval Ai,i′ yields a subgroup J (k,γ,λ,i,i′)

M that contains all jobs j ∈ J (k,γ,λ,i)
M whose

(k + 1)-th part ends in Ai,i′ , i.e., (t(k+1)
j − 1) ∈ Ai,i′ .

We continue recursively for K levels, expanding the tree accordingly. Analogous to before,
we obtain for each node v in level k′ of the tree (that is not a leaf), a subprofile function f̄v
and an approximate version f̃v such that f̃v(t) ≤ f̄v(t) ≤ f̃v(t) +O(δ) · |J̄ (k,γ,λ,v)

M | · (1 + ε)λ+1,
where J̄ (k,γ,λ,v)

M is the set of jobs in Jv that the optimum extends up to its (k + k′)-th part.
The leafs of the tree yield a partition of the job set, and the total number of nodes is (1/δ)K .

We can guess the whole partition in time n(1/δ)O(K) which will eventually be bounded by
nOε(1) (note that there are only T ≤ poly(n) options for each endpoint of an interval Ai or
Ai,i′ , etc.). In the same running time, we can guess for each arising group and subgroup the
total number of jobs that OPT selects from these groups. More precisely, let G(k,γ,λ) be the
resulting tree and for each node v denote by Jv the corresponding job group. For a node v
on level k′ we guess the value N(v), the number of jobs in Jv that the optimum extends at
least up to their respective (k + k′)-th part.

We now bound the total demand deficit made by the underestimating functions. Let
f(t) =

∑
j∈J(k,γ,λ)

M
:j active at t in OPT pj be the total size of jobs in J (k,γ,λ)

M that cover t in the
optimal solution. We say that a solution is concordant with the tree G(k,γ,λ) and numbers
N(v) if, for each node v of each level k′, the solution selects the (k + k′)-th part of at least
(1 + ε)N(v) jobs in Jv, or of all jobs in Jv in case that |Jv| < (1 + ε)N(v). As the next lemma
shows, any tree concordant solution covers the demand at any point t almost as good as
the optimal solution. The gap is bounded by K · δ · |J̄ (k,γ,λ)

M | · (1 + ε)λ+1 which is an upper
bound on the sum of the deficits of all subprofiles relevant for a time point t. Here J̄ (k,γ,λ)

M is
the subset of jobs in J (k,γ,λ)

M that OPT extends at least to the k-th part.

I Lemma 5. Consider any solution concordant with tree G(k,γ,λ). The demand covered by
such a solution at any time t ∈ [tM , T ) is at least f(t)−K · δ · |J̄ (k,γ,λ)

M | · (1 + ε)λ+1.

2.2 Fixing the demand deficit
We would like to recurse on the left and on the right subproblem, i.e., on [0, tM ) and
[tM + 1, T ). We have guessed the correct number of jobs in each group but we have not
decided yet which exact jobs from each group we want to select.

We deal with these issues as follows. Let us fix a tree G(k,γ,λ). We first consider any
solution ALG that is concordant with the tree. By Lemma 5, this solution already covers
almost all necessary demand, having a deficit of at most δ · |J̄ (k,γ,λ)

M | · (1 + ε)λ+1 for every
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Parts picked by ALG
Parts picked by OPT
Parts picked by ALG and OPT

Jobs ALG can pick completely for fixing
t

Figure 4 In contrast to the regular UFP-Cover Problem where selecting new jos is always
sufficient, here this is not the case: even selecting all the new (bottom) jobs does not suffice to cover
t! Instead, extending previously selected jobs is necessary.

time point in [tM , T ]. Even if we can fix this demand by adding more jobs (and we will,
essentially, do so), picking an arbitrary concordant solution at this point will create issues
for the left subproblem: nothing guarantees that the chosen solution we pick allows to cover
the remaining demand within [0, tM ) at a reasonable cost. To avoid this problem, we call
the left subproblem recursively, giving the trees G(k,γ,λ) and numbers N(v) for each node
as input. We will require this problem to give us a solution ALG that is concordant with
the tree for each group J (k,γ,λ)

M and that satisfies all demand at [0, tM ). The exact way of
solving this left subproblem is given in the next subsection. We call a solution constructed
this way a left-feasible solution.

Consider now a left-feasible solution ALG and fix a tree G(k,γ,λ). The idea is to fix the
deficit in [tM , T ) by adding jobs picked greedily. As a first approach we could consider the
following method: within all jobs in J (k,γ,λ)

M not active at tM , pick the δ|J̄ (k,γ,λ)
M |(1 + ε) ones

that extend furthest to the right when all of their K parts are chosen. We denote by H(k,γ,λ)

the set of these jobs. For any timepoint t that is covered by all these jobs, we will cover the
whole deficit. Also, we can show that total incurred cost is at most an ε-fraction of the cost
of OPT ∩ J̄ (k,γ,λ)

M . One might be tempted to conclude that we are done: since we picked the
jobs greedily, a time point t that is not covered by all jobs in H(k,γ,λ) cannot be covered by
any other job that we did not make active at tM . This is indeed enough to argue in the
regular UFP-Cover problem [12]. However, the argument fails in our setting as we might
still be able to further extend some jobs that our solution picks to cover tM but not are not
extended to cover t; see Figure 4.

To solve this issue we truncate ALG by removing for each group J (k,γ,λ)
M and each job

j ∈ J (k,γ,λ)
M all parts that do not cover any point t ∈ [0, tM + 1). Let ALGM be the truncated

solution. We show that ALGM plus all parts of all jobs in H(k,γ,λ) can be extended (by
adding more parts, not necessarily like ALG) to a solution that covers all required demand
and costs at most a 1 + ε factor more than OPT. The constructed solution covers all demand
at times [0, tM + 1) and we will solve the remaining problem in the right subproblem.

To make this idea formal, denote by OPTM the solution obtained by taking OPT and
removing from it all parts Ikj such that Ikj ⊆ [tM + 1, T ). For any left-feasible solution S we
say that a solution S′ is an extension of S if for each job j the solution S′ extends j up to at
least as many parts as S.

I Lemma 6. Assume that 1/δ = K · ε(1 + ε)O(K). Suppose we are given the left-feasible
truncated solution ALGM . Then we can compute in polynomial time a set of jobs H ⊆ JM
such that

if we select all parts of each job in H this yields a total cost of at most O(ε) · c(OPTM ),
and
for the solution ALGM ∪H there is an extension ALG′ such that c(ALG′)− c(ALGM ∪
H) ≤ c(OPT)− c(OPTM ).

ICALP 2017
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Proof Sketch. Consider a set J (k,γ,λ)
M . We consider all jobs of this set that are not covering tM

in ALG and sort them non-increasingly with respect to the right endpoint of IKj . Let H(k,γ,λ)

be the set of the first K ·δ|J̄ (k,γ,λ)
M |(1+ε) such jobs and define H = ∪k,γ,λH(k,γ,λ). Notice that

extending all parts of jobs in H(k,γ,λ) incurs a cost of at most K · δ(1+ ε)K+1(1+ ε)γ |J̄ (k,γ,λ)
M |.

By choosing the constants in the definition of δ appropriately we obtain that the cost is
O(ε) · c(J̄ (k,γ,λ)

M ). Summing over all triplets k, γ, λ yields the desired bound on the total cost
of H.

For a given set H(k,γ,λ), out of all right endpoints of jobs in the set, call τR the one most to
the left. Inside the interval [tM , τR) the jobs in H(k,γ,λ) cover at least K(1 + ε)λ+1δ|J̄ (k,γ,λ)

M |,
and thus they cover all deficit left by the solution ALG (or any other tree concordant solution).
On the other hand, for any t > τR our greedy choice for H(k,γ,λ) guarantees that all jobs in
J

(k,γ,λ)
M that can be extended to cover t are taken at least up to their k-th part in ALGM ∪H.

This allows us to construct the claimed extension ALG′ of ALGM ∪H: we start with ALG
and transform it step by step to make it resemble the optimal solution. Note that this is a
purely existential result since we need to know the optimal solution for this procedure. J

2.3 Left subproblem

Suppose that via recursion we have computed a left-feasible solution ALG. Then, using
Lemma 6 we compute the jobs H such that c(H) ≤ O(ε) · c(OPTM ) and such that the
extension ALG′ is guaranteed to exist. In order to compute (an approximation to) ALG′ we
recurse on the right subproblem, given by the interval [tM + 1, T ).

For each t ∈ [tM + 1, T ) we update the demand Dt to take into account that we already
selected some job parts crossing tM and the jobs in H. Formally, we define the new demands
as D′t := Dt−

∑
j:t∈J̃(t) pj where J̃(t) denotes the set of jobs j such that ALGM ∪H contains

a part of j that covers t. For each job j such that ALGM selected the part Ikj covering tM ,
our subproblem only has the parts of j that lie completely within [tM + 1, T ). We update
their cost, taking into account that the left subproblem has already paid ckj for it, i.e., the
cost value c̄`−kj for each new part `− k is set to c̄`−kj = c`j − ckj . This yields an instance of
our problem on the interval [tM + 1, T ) whose size is only half the size of the original interval
[0, T ). Strictly speaking, the new costs might no longer be a power of 1 + ε. However, note
that the adjustment of costs means that c̄1j = ck+1

j − ckj = εc1j . Therefore, the costs of any
two parts of a job still differ by at most a constant factor and the new cost values come from
a set of size O(poly(logn)) (which is important to bound the number of job groups J (k,γ,λ)

M )
. Moreover, this factor does not increase further in the recursion and hence we can recurse
one the right subproblem with essentially the same routine as above.

It remains to describe how to recurse on the left subproblem for the interval [0, tM ).
Formally, this subproblem is defined as follows: we are given the interval [0, tM ) together
with the demand D′t for each point t ∈ [0, tM ) (the updated demand). Also, for each tree
G(k,γ,λ) and each vertex v we are given a corresponding group of jobs Jv. Additionally we
have to consider the set of all input jobs j such that no part of j crosses tM - we refer to
this set of jobs as JL. Finally, for each group Jv we are given a value N(v) that indicates
that for at least (1 + ε)N(v) jobs in Jv we have to select the respective part that crosses tM .

Our objective is to find a solution for jobs in JL ∪
⋃
k,γ,λ J

(k,γ,λ) that covers all demand
in [0, tM ) and that is concordant for each tree. To have a cleaner subproblem, we observe
that the leaves of G(k,γ,λ) imply a partition of the jobs of J (k,γ,λ) into subgroups. For each
of them we guess how many jobs the optimal solution selects from the subset corresponding
to that leaf. Then for each of them we require that the left subproblem selects either a factor
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1 + ε more jobs or all jobs from that subset. The resulting solution can easily be transformed
into a concordant solution.

We consider the point t′M := d tM2 e. Like above, we partition the jobs into groups according
to which part of them crosses t′M . However, we do this separately for JL and each subgroup
of jobs crossing tM . For each resulting separate group, we guess the profiles and recursive
subprofiles as before. Once we have guessed this partition of the jobs together with the
required number of jobs of each group, we recurse on the left-left problem, i.e., on the problem
for the interval [0, t′M ). When we obtained a solution for the left-left subproblem in the
interval [0, t′M ) we recurse further on the interval [t′M , tM ). For this left-right subproblem, we
update the cost of the jobs whose respective parts crossing t′M were selected by the left-left
subproblem (like we did when we defined the right subproblem of the interval [tM + 1, T ))
and additionally impose the constraint that from each group Jv (as defined by the main
subproblem for the interval [0, T )) for at least (1 + ε)N(v) jobs we select the respective part
crossing tM .

Number of groups. We continue recursively in the same fashion. In the recursion, the
number of job groups we pass to each subproblem increases since from the main subproblem
for the interval [0, T ) we are given a partition into subgroups and whenever we recurse on a
left subproblem these subgroups are partitioned further and also new subgroups are defined.
However, we can show that in each step of the recursion the total number of arising subgroups
is bounded by ( 1

ε2 logn)O(K).

I Lemma 7. In the input of each subproblem arising in the recursion, the jobs are partitioned
into at most ( 1

ε2 logn)O(K) different groups.

Whenever we are given a subproblem on some interval I ′ then we guess subgroups and
certain values with a quasi-polynomial number of options in total and we recurse on two
subproblems, given by subintervals of I ′ whose size is half the size of I ′. Thus, the recursion
tree has a depth of O(log T ) = O(logn) and each internal node of the tree has at most
quasi-polynomially many children. Hence, our algorithm has quasi-polynomial running time
overall.

I Theorem 8. There are quasi-polynomial time (1 + ε)-approximation algorithms for the
general scheduling problem and for the generalized UFP-Cover problem, assuming that all
input values are quasi-polynomially bounded integers.

3 Agreeable Instances

In this section we present our pseudopolynomial-time (1 + ε)-approximation algorithm for the
UFP-Cover problem on agreeable instances. We first show how to partition a given instance
into smaller subinstances (Section 3.1). Then we then present our algorithm for a special
type of subinstances (Section 3.2).

For simplicity of presentation, we will assume throughout this section w.l.o.g. that each
integer timepoint t is associated with a demand Dt and that we only need to cover the
demands at such timepoints. Furthermore, we assume w.l.o.g. that the the intervals defined
by the release-time and deadline of each job are closed, i.e., have the form [rj , dj ]. We also
assume that all elements of the set U := ∪j{rj , dj} are disjoint. To simplify the presentation,
we further assume w.l.o.g. that all elements of U are even integers.

ICALP 2017
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Figure 5 The thick blue jobs are the pivotal jobs, and the dashed vertical lines define the intervals.
It is helpful to think of rj for the first pivotal job j as the start point of the first interval.

3.1 Preprocessing & Preliminary Observations
We partition the time-horizon into intervals. We may assume that there is no timepoint
throughout [0, T ] that is not covered by any job, since then we could easily seperate the
instance at this timepoint into two independent subinstances. For our partitioning we
inductively introduce a set of pivotal jobs P .

I Definition 9. The first pivotal job is the job with earliest start time rj . We define the
other pivotal jobs by induction. Assume that we have defined the first k pivotal jobs j1, ..., jk.
Then the (k+1)-th pivotal job is the job with latest start time among all jobs j with rj ≤ djk .

We use the end points of the pivotal jobs in order to partition the time horizon into
intervals I. More formally, we partition the time horizon into intervals at timepoints
X := {dj : j ∈ P} ∪ {0}. Let T0, T1, · · · be the timepoints in X in increasing order. Then
each interval in I is of the form [Tk, Tk+1] for some k ∈ N. See Figure 5 for an example.

I Lemma 10. The [rj , dj ]-interval of any non-pivotal job intersects at most one timepoint
of X. The [rj , dj ]-interval of any pivotal job intersects at most two timepoints of X.

Next, we cut the instance into subinstances so that each subinstance contains at most q
many intervals (in our final algorithm we will set q = O(1/ε)). We do this in a randomized
fashion but the procedure can be easily derandomized, similar to, e.g., [2]. Let x be a random
variable that takes its value uniformly at random among the integers {0, 1, 2, . . . , q − 1}.
We “cut” the instance into subinstances at timepoints W := {Tx, Tx+q, Tx+2q, . . . }. Let
each subinstance Ii := [Tx+iq, Tx+(i+1)q] contain all jobs j whose interval [rj , dj ] intersects
Ii. Jobs j whose intervals [rj , dj ] span two consecutive subinstances Ii and Ii+1 are split
into two jobs: a job j′ with rj′ := rj , dj′ := Tx+iq, pj′ := pj , cj′ := cj , and a job j′′ with
rj′′ := Tx+iq, dj′′ := dj , pj′′ := pj , cj′′ := cj .

Note that the choice of x can be derandomized by trying out all q possible choices for x
and selecting the best one. For the obtained division into subinstances we prove the following
lemma.

I Lemma 11. An exact algorithm with running time O(f(n)) for a subinstance containing
at most q consecutive intervals from I yields a (1 + 2/q)-approximation algorithm for the
original instance, with a running time of O(n · f(n)).

We give a pseudopolynomial-time exact algorithm for the problem on instances with q =
O(1/ε) many consecutive intervals. The algorithm is based on dynamic programming. Due
to space constraints in the main body of the paper we only present a simpler version of our
DP for the case q = 1 in Subsection 3.2.

3.2 Solving a subinstance with only one interval
Assume that we are given a subinstance consisting of only one interval Ii. We form a partition
JL∪̇JR for the jobs whose [rj , dj ]-interval intersects this interval Ii. The set JL is the set of
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all jobs j such that dj ∈ Ii, and JR is the set of such jobs j such that rj ∈ Ii. By Lemma 10,
JL∪̇JR comprises the whole set of jobs j such that [rj , dj ] ∩ I 6= ∅. We now define a set of
relevant timepoints M for our interval Ii as M := (U ∩ Ii), where U := {rj , dj |j ∈ J} is the
set of all globally relevant timepoints.

Let us consider this set ordered from left to right, so that M = {t1, t2 . . . tk}. We fill out
the table of our dynamic program in a bottom-up fashion by considering these timepoints in
reverse order, that is from right to left. Each cell of the dynamic programming table has the
form T [tz, b, iL, cL, cR]. Intuitively, it describes the subproblem of covering the demand on
the subinterval [tz, tk] by a set of jobs J ′L ⊆ JL having their respective deadline in [tz, tk + 1]
with p(J ′L) :=

∑
j∈J′

L
pj = iL and c(J ′L) :=

∑
j∈J′

L
cj = cL, and by a set of jobs J ′R ⊆ JR

having their respective release dates in [tz, tk + 1] with c(J ′R) = cR. The demand at each
point t ∈ [tz, tk] is Dt − b, i.e., the reader may imagine that some other routine of the global
algorithm selects jobs with a total size of b that cover each point in [tz, tk].

Formally, this DP cell is filled out with a “yes” if and only if there exist two sets J ′L ⊆ JL
and J ′R ⊆ JR, such that:
(i) for each job j ∈ J ′R, there holds rj ≥ tz, and for each job j ∈ J ′L there holds dj ≥ tz,
(ii) p(J ′L) =

∑
j∈J′

L
pj = iL and c(J ′L) =

∑
j∈J′

L
cj = cL,

(iii) c(J ′R) = cR, and
(iv) ∀` : z ≤ ` ≤ k,

∑
j∈J′

L∪J
′
R:[rj ,dj ]3t` pj ≥ Dt` − b.

Filling out the table. We fill out the table starting with all entries for the rightmost
timepoint tk. First, we fill in T [tk, b, iL, cL, cR] for all possible values of 0 ≤ iL ≤

∑
j pj ,

0 ≤ cL, cR ≤
∑
j cj , and 0 ≤ b ≤

∑
j∈JR pj . Note that for such a cell only the pivotal job jp

of the interval is relevant since no other job can have its release date or deadline at tk. For
filling in the entry it suffices to consider the two possibilities of selecting jp and not selecting
jp.

Assume now that we have filled in all cells corresponding to timepoints from tz+1 to tk
and we want to fill in the entries for tz. The timepoint tz is the start or the end point of a job
j that either belongs to JL or to JR. The entries for tz in our dynamic programming table
depend on the set to which j belongs to, and on whether j is added to the solution. Formally,
if j ∈ JR, then T [tz, b, iL, cL, cR] = “yes” if and only if T [tz+1, b, iL, cL, cR] = “yes” and
iL+b ≥ Dtz or if T [tz+1, b+pj , iL, cL, cR−cj ] = “yes” and iL+b+pj ≥ Dtz . So either we do
not add j to the solution, and then we need to cover the demand at tz with the jobs already
selected for tz+1, or we add j to the solution, and then we can add its size to the respective b-
entry at tz+1. Symmetrically, if j ∈ JL, then T [tz, b, iL, cL, cR] = “yes” if and only if we have
that T [tz+1, b, iL, cL, cR] = “yes” and iL+b ≥ Dtz or if T [tz+1, b, iL − pj , cL − cj , cR] = “yes”
and iL + b ≥ Dtz .

By keeping track of the respective sets JL and JR in each cell we are able to reconstruct
our solution starting from the cell of the form T [t1, 0, iL, cL, cR] that minimizes cL+cR among
all such cells with a “yes”-entry. Our dynamic program requires pseudopolynomial running
time, because the considered possible values for cL, cR, iL and b are pseudopolynomial in the
input size. It returns an exact solution to the given problem. We are able to generalize these
ideas to subinstances with O(1/ε) many intervals, and thus prove the following theorem.

I Theorem 12. There is a pseudopolynomial-time (1 + ε)-approximation algorithm for the
UFP-Cover problem on agreeable instances.
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