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Abstract
We consider the minimum spanning tree (MST) problem in an uncertainty model where uncertain
edge weights can be explored at extra cost. The task is to find an MST by querying a minimum
number of edges for their exact weight. This problem has received quite some attention from the
algorithms theory community. In this paper, we conduct the first practical experiments for MST
under uncertainty, theoretically compare three known algorithms, and compare theoretical with
practical behavior of the algorithms. Among others, we observe that the average performance and
the absolute number of queries are both far from the theoretical worst-case bounds. Furthermore,
we investigate a known general preprocessing procedure and develop an implementation thereof
that maximally reduces the data uncertainty. We also characterize a class of instances that
is solved completely by our preprocessing. Our experiments are based on practical data from
an application in telecommunications and uncertainty instances generated from the standard
TSPLib graph library.
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1 Introduction

Uncertain data is a common issue in many real-world optimization problems. While it is
clear that uncertain data can not be completely avoided, improved or exact data can often be
explored at an additional cost. Classical approaches to optimization under uncertainty such
as robust, stochastic, and online optimization do not capture this possibility. Uncertainty
exploration takes a different approach by taking into account the exploration of uncertain
data at extra cost. Here, the goal is to quantify the trade-off between an investment in
more precise data and the resulting quality for the solution to the optimization problem. A
major research line in this context asks for the minimum exploration cost to find an optimal
solution. In a sense, this is the opposite of robust optimization that aims for the best solution
with zero exploration cost.
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Applications for optimization under explorable uncertainty can be found, e.g., in telecom-
munication or infrastructure network design, where either construction cost estimates can be
improved through expert advice, or approximate connection lengths can be ensured through
field measurements. Other optimization problems that allow uncertainty exploration are user
demand estimates that can be improved through user surveys, and weather predictions that
can be enhanced by both, additional measurements and more computational power.

In this paper, we consider the minimum spanning tree (MST) problem in the uncertainty
exploration model. For each edge, we are given an uncertainty interval in which the exact
edge weight lies. We can query each edge to find out its exact weight. The goal is to minimize
the number of queries needed until we find a minimum spanning tree. As a performance
measure we use the competitive ratio, that is, the worst-case ratio between the number of
queries needed by an algorithm and the minimum number of queries required when given
the exact data in advance. Precise definitions follow at the end of this section.

The MST problem, as one of the most fundamental and practically relevant combinatorial
optimizations problems, has been investigated intensively in the uncertainty exploration model
from the theoretical perspective. Several algorithms with provable worst-case guarantees
are known [8, 15]. In this paper, we compare these algorithms theoretically, conduct
the first practical experiments, and compare the theoretical and practical behavior of the
algorithms. Furthermore, we investigate a preprocessing that was proposed in [15]. We
develop an implementation thereof, for which we guarantee that it maximally reduces the
data uncertainty. This is not only theoretically interesting but also practically relevant, as it
reduces the data uncertainty that remains when starting an (arbitrary) algorithm.

We run our experiments on two different data sets. The first set of data is from a
telecommunication service provider. It describes a problem that appears when expanding a
cable network to a new roll-out area. First, the facility locations are chosen, that need to be
connected. The exact connection costs between the facilities are unknown and can only be
explored through costly field measurements. We find the best MST under uncertainty for
these instances. We complement this practical data by a second data set, which we generate
based on graphs available in the well-known graph library TSPLib [16].

Related Work. Optimization under uncertainty is an important, well-studied topic in theory
and practice. The major lines of research are robust optimization [2], online optimization [4],
and stochastic optimization [3], each modeling uncertain information in a different way. The
first model where uncertain information can be explicitly explored at a fixed cost was studied
by Kahan [14]. He investigated finding the maximum and median of a set of values known
to lie in given uncertainty intervals. The recent survey by Erlebach and Hoffmann [6] gives
a nice overview on research in the uncertainty exploration model. Various problems have
been studied, including the k-th smallest value in a set of uncertainty intervals [14, 13, 10]
and classical combinatorial optimization problems, such as shortest path [9], finding the
median [10], the MST problem [8, 15, 11], the cheapest set problem [7] and the knapsack
problem [12]. The latter work on the knapsack problem seems to be the only one that
contains computational experiments conducted in this field.

The MST problem with uncertain edge weights was introduced by Erlebach et al. [8].
Their deterministic algorithm achieves an optimal competitive ratio of 2. A simplification of
this algorithm that omits a repetitive restart by preserving the competitive ratio was given
in [15]. Also the existence of a dual algorithm is observed. The main contribution in [15] is
a randomized algorithm with expected competitive ratio of 1 + 1/

√
2 ≈ 1.707 whereas the

best-known lower bound is 1.5. The offline problem of finding the optimal query set for a
given realization of edge weights can be solved in polynomial time [5].

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/index.html
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Our Contribution. We theoretically compare the three algorithms for MST under un-
certainty, make practical experiments and showcase similarities and differences between
theoretical and practical observations. For the algorithms we define the best-possible pre-
processing in Section 3 and characterize a class of instances which it solves completely. We
observe exactly this structure in one of the practical data sets. Our experiments show that the
average competitive ratio is small and the total number of queries as well. The comparison
of theory and practice in Sections 2 and 5 shows that the competitive ratio and the variance
in the size of an optimal solution are far from the worst-case. While theoretically there
are instances on which the two deterministic algorithms show opposing behavior, in our
experiments their performance is almost identical for all instances. We show that there are
instances on which the two deterministic algorithms perform better than the randomized one.
Surprisingly, we observe this behavior for the telecommunication data. For the TSPLib data
the opposite happens and the randomized algorithm has a significantly smaller competitive
ratio. Conducting the first experiments, we saw that the implementation hurdle is small and
our run times are reasonably small, even though we did not optimize on it.

Problem Definition and Notation. Given an undirected, connected graph (V, E) with
|V | = n and |E| = m, we associate with each edge e ∈ E an uncertainty interval Ae. This
interval constitutes the only information about e’s unknown weight we ∈ Ae. Such an interval
is either trivial, Ae = [Le, Ue], Le = Ue, or it is non-trivial, i. e., Ae = (Le, Ue), with lower
limit Le and upper limit Ue > Le. Closed, non-trivial intervals cannot be allowed as they lead
to a non-constant competitive ratio [8]. We call an edge trivial if it has a trivial uncertainty
interval, non-trivial otherwise. Let A be the set of uncertainty intervals for E. Then an
instance of our problem is an uncertainty graph G = (V, E,A) together with a realization R
of edge weights (we)e∈E which lie in their corresponding uncertainty intervals, i. e., we ∈ Ae.

The task is to find a minimum spanning tree (MST) in the uncertainty graph G for an
a priori unknown realization R of edge weights. We may query any edge e ∈ E and obtain
its exact weight we according to R. The goal is to determine an MST through a sequence of
queries that is as short as possible. The resulting set of queries Q ⊆ E is feasible, if there is
a spanning tree which is an MST for every realization of edge weights we ∈ Ae for e ∈ E \Q

and the weights we defined by R for e ∈ Q. We call this problem MST under uncertainty.
We evaluate our algorithms by standard competitive analysis. An algorithm is c-competi-

tive if, for any realization R = (we)e∈E , the number of queries is at most c times the optimal
query number. For a fixed realization R, the optimal number of queries describes the
minimum size of a query set that verifies an MST. The competitive ratio of an algorithm is
the infimum over all c such that the algorithm is c-competitive. For randomized algorithms
we compare the expected number of queries to the optimal number of queries.

2 Introduction of Algorithms and Theoretical Comparison

In this section we discuss known algorithms for MST under uncertainty. The first (determin-
istic) algorithm Ured was introduced by Erlebach et al. [8]. It achieves the best-possible
competitive ratio of 2. Subsequently, two deterministic algorithms Cycle and Cut with
competitive ratio 2 were given by Megow et al. [15]. Originally, they were presented for the
more general problem of computing a minimum weight matroid basis in the uncertainty
exploration model. Applying Cycle to computing an MST, it can be interpreted as a variant
of Ured without repeated restarts and, thus, we consider here only the simplified variant.
The randomized algorithm Random with competitive ratio 1.707 and a preprocessing were
given also in [15]. Here the best known lower bound is 1.5.

SEA 2017
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In our paper we consider the three algorithms Cycle, Cut and Random, which we
briefly describe below; pseudo-code can be found in the appendix. We apply the preprocessing
on the input to all three algorithms. Details on the preprocessing follow in Section 3.

Deterministic algorithm Cycle. The algorithm Cycle is a worst-out greedy algorithm that
is based on the following MST characterization: The largest-weight edge in a cycle is not
in any MST. It starts out with a candidate minimum spanning tree and then iteratively
considers the other edges. Each additional edge defines a cycle together with the candidate
tree. On this cycle, the two edges with largest upper limit are queried repeatedly, until we
either verify the additional edge has largest weight or we find an edge of larger weight on the
cycle. In the latter case we improve the tree by exchanging the two edges.

Deterministic algorithm Cut. Cut is the dual algorithm to Cycle, that is defined by
matroid duality. It uses that the minimum-weight edge in a cut is in an MST. Like in the
previous algorithm, Cut starts with a candidate MST, but iteratively considers the tree
edges. Deleting a tree edge defines a cut. On this cut we repeatedly query the two edges
with smallest lower limit, until we either verify that the tree edge has the smallest weight in
the cut or find an edge of smaller weight to replace the candidate tree edge.

Randomized algorithm. The randomized algorithm Random crucially needs a preprocessed
instance with the following structural property: For any cycle appearing in the algorithm,
any feasible query set contains either the edge with largest upper limit e or all edges
with overlapping interval, i.e., whose uncertainty interval contains the lower limit Le. The
preprocessing, which we discuss in detail in Section 3, guarantees this property [15].

The algorithm Random uses the same structure as Cycle. Starting out with a candidate
MST, it iteratively considers the remaining edges not in this tree. For each remaining edge,
the algorithm inspects the (unique) cycle it closes in the MST to see which of its edges
should be queried. The preprocessing yields that on each such cycle any feasible query set
contains either the edge with the largest upper limit, say f , or all cycle edges whose intervals
overlap with that of f . The algorithm either queries the largest edge or all overlapping edges
at once. To balance this decision over several cycles closed during the algorithm, Random
introduces a potential for each edge. In each cycle additional potential is distributed to all
overlapping edges such that they reach an equal level. Depending on the resulting amount of
potential, either these edges or the edge with largest upper limit are queried. This decision
is randomized by comparing the potential to a randomly chosen uniform threshold.

2.1 Comparing the Deterministic Algorithms
We show that there are instances on which Cycle and Cut have an opposing performance,
meaning that one algorithm is near-optimal and the other shows its worst-case performance.
Intuitively, the instance is solved by querying the edges of a single cycle C and Cycle queries
pairs of edges on C only. Cut, however, almost exclusively queries pairs with only one edge
in C. The reverse holds for instances, in which it suffices to query the edges of a single cut.

Our graph class SP consists of a path of edges S and a set of parallel edges P , each of
which closes a cycle with S. We give two realizations R1 and R2 in Figure 1.

For R1 the set S is the unique optimal query set and a query set is a feasible solution
only if it contains S. The first cycle closed by the algorithm Cycle contains S and exactly
one edge of P . It queries all edges on this cycle, which is a feasible solution of size |S|+ 1.
Cut on the other hand considers cuts of the form P + {s} with a non-queried edge s ∈ S.
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Figure 1 Different realizations for the class of uncertainty graphs SP lead to different extremes
in the behavior of Cycle and Cut. Edge labels: (Le, Ue) | we.

There are |S| such cuts. For each, Cut queries a pair of edges as long as there are non-
queried edges left in P . Thus, it queries |S| + min {|S|, |P |} edges. By choosing S and P

of appropriate cardinality we can achieve every performance ratio q ∈ (1, 2] for Cut. In
particular, for |S| ≤ |P | and |S| → ∞, the performance ratio of Cycle approaches 1 and
the ratio of Cut is 2.

The reverse holds for the realization R2. In this case a feasible query set has to contain P ,
Cut finds a solution of size |P |+ 1, and Cycle queries |P |+ min {|S|, |P |} edges.

I Observation 1. For any rational q ∈ (1, 2], there exists a graph in the class SP and
a realization such that Cycle (Cut) is near-optimal whereas Cut (Cycle) yields a
performance ratio of q.

Thus, theoretically the query set sizes can vary greatly for Cycle and Cut. However, we do
not observe this behavior for any of the instances in our experiments.

2.2 Comparing Randomized and Deterministic Algorithms
We show that Random can be optimal for worst-case instances of Cycle and Cut, and –
somewhat surprisingly – the reverse is also possible.

Consider a family of cycles joined in one node, each with three edges f , g, h with
uncertainty intervals (1, 4), (0, 3) and [1, 1] respectively. Further, edge f has weight 3 and
edge g has weight 1. Then, Random terminates with a single query of either f or g in each
cycle, while Cycle and Cut query both f and g.

I Observation 2. There are instances, for which Random finds an optimal solution, while
Cycle and Cut achieve their worst-case ratio of 2.

A similar instance evokes the reverse performance behavior. Consider a cycle C with k edges
ei with interval (0, 3), one edge g with interval (0, 4) and one edge f with interval (1, 5). We
choose the weights as wei

= 2 and wg = wf = 3. Then Cycle and Cut query only edges f

and g, which is optimal, but Random yields its worst-case ratio 1 + 1/
√

2 for k →∞.

I Observation 3. There exists a family of uncertainty graphs, for which Cycle and Cut
perform optimally, whereas Random asymptotically shows its worst case behavior.

2.3 Variance of OPT
We investigate the variance of the optimal number of queries, Opt, under different realizations
for a fixed input instance. We give an example instance in which small perturbations in the
realization significantly change the value of Opt.

SEA 2017
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Algorithm 1 Preprocessing (≺`,≺u)
Input: An uncertainty graph G = (V, E,A).
Output: A query set Q ⊆ E and the two trees T`, Tu.
1: Q← ∅.
2: Determine T` and Tu according to ≺` and ≺u respectively using Prim’s algorithm [1].
3: while T` \ Tu contains a non-trivial edge do
4: Query all non-trivial edges in T` \ Tu, and add them to Q.
5: Update T` and Tu.
6: return The query set Q and the two trees T`, Tu.

Consider a cycle C of length m consisting of an edge f with uncertainty interval (1, 4)
and m− 1 identical edges {g1, . . . , gm−1} =: G with uncertainty interval (0, 3) and weight 2.
If we set the weight of f to be 3, it suffices to query f and Opt = 1. On the other hand, if
the weight of f is 2, all edges in C have to be queried and Opt = m. Interestingly, we do
not observe this large variance in our experiments (see Section 5: The optimal solution).

I Observation 4. For a fixed uncertainty graph Opt can vary greatly even for minor changes
of the underlying realization.

3 Preprocessing

Preprocessing aims at simplifying the input instance, that is, we identify and query edges
that must be queried by any algorithm including the optimal one. Naturally, we want to
query as many such edges as possible before starting the actual algorithm.

There is a characterization of (a subset of) such edges that relies on the following definition.
Given an instance of MST under uncertainty, the lower limit tree T` is an MST for the
realization w`, in which all edge weights of edges with non-trivial uncertainty interval are
arbitrarily close to their lower limits, more precisely w`

e = Le+ε for infinitesimally small ε > 0.
The upper limit tree Tu ⊆ E is an MST for the realization in which edges have weights
arbitrarily close to their upper limit, that is, wu

e = Ue − ε. Note, that the order relation
of edges with identical lower (upper) limit is yet unspecified. By ≺` and ≺u we denote an
arbitrary but fixed pair of total orderings of edges, w.r.t. which we obtain a lower limit tree
T` and upper limit tree Tu respectively.

I Theorem 5 ([15]). Given an uncertainty graph with lower and upper limit trees T`, Tu,
any non-trivial edge e ∈ T` \ Tu is in every feasible query set for any realization.

The preprocessing in [15] iteratively computes the trees T` and Tu and queries the edges in
the set T` \ Tu until this set contains only edges with trivial uncertainty interval; see Alg. 1.
The choice of ≺` and ≺u and thus specifying the order relation of edges with identical lower
(upper) limit raises the potential for good or bad choices. As an example, consider a graph
of k identical two-edge cycles that are all joined in one node. Each cycle is of the form
C = {e1, e2}, where all edges have the same lower limit L and upper limits U1 < U2. Then,
for any ordering ≺u the upper limit tree Tu does not contain e2 for each of the cycles. For
the lower limit ordering ≺`, all orderings are feasible. For the ordering e1 ≺ e2, we have
T` = Tu and the preprocessing does not query any edge. However, for the ordering e2 ≺ e1
the two trees are disjoint and k edges are queried in the first iteration of the preprocessing.

Observing this significant impact, we define a specific pair of total orderings ≺L,≺U on
the edges and we prove that the algorithm above, Preprocessing (≺L,≺U ), maximizes the
total number of queries.
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I Definition 6 (Limit Orders and Trees). Let G = (V, E,A) be an uncertainty graph and let
e1, . . . , em be an arbitrary but fixed labeling of the edges in E. Then we define two orderings
for the edges in E.
Lower Limit Order: ei ≺L ej , if Lei < Lej or if Lei = Lej and one of the following

holds:
(i) ei trivial and ej non-trivial
(ii) Uei

> Uej
and ej non-trivial

(iii) Uei = Uej and i < j.
Upper Limit Order: ei ≺U ej , if Uei

< Uej
or if Uei

= Uej
and one of the following

holds:
(i) ej trivial and ei non-trivial
(ii) Lei

> Lej
and ei non-trivial

(iii) Lei = Lej and j < i.
We call the corresponding lower and upper limit trees TL and TU .

We show that Preprocessing (≺L,≺U ) queries all edges which are in T` \ Tu for any
other pair of orderings ≺`,≺u. As a first step, it is not hard to see that an edge e, which is
contained in T` \ Tu for some fixed orderings ≺` and ≺u, remains in this set independently
from queries of edges other than e.

I Lemma 7. An edge in T` \ Tu remains in the set T` \ Tu until it is queried.

Proof. Let e be in T` \ Tu. As long as e is not queried, its interval limits do not change.
Querying other edges only increases their lower limits and decreases their upper limits. Hence,
e stays in T` and remains excluded from Tu. J

Next we show that Preprocessing (≺L,≺U ) does not terminate while there is a non-
trivial edge in T` \ Tu. The proof of Lemma 8 considers an edge e in T` \ Tu and proves the
statement separately for the three cases e ∈ TL, e /∈ TL and e /∈ TU as well as e ∈ TU \ TL.

I Lemma 8. If there is a non-trivial edge in T` \ Tu, then there is also one in TL \ TU .

Proof. Assume there is a non-trivial edge e ∈ T` \Tu, but TL \TU contains only trivial edges.
We distinguish three cases. If e is in TL, it is also in TU . Then there is an edge h, which is
in the cut in TU \ e and in the cycle in Tu ∪ e. As it is in the cut, we have Uh ≥ Ue. At the
same time, the cycle shows Uh ≤ Ue, such that the two upper limits must be equal. Then,
the fact that h is in the cut, but not in TU means Le ≥ Lh. If h is trivial, e must also be
trivial, which contradicts our assumption. Otherwise, as we choose h /∈ TU and TL \ TU

contains only trivial edges, edge h is also not in TL. If h is not in the cut TL \ e, there must
be an edge g in TL \ TU that is in the cut TU \ e and in the cycle in TL ∪ h. This edge g

is trivial, larger than e in the ordering ≺U and smaller than h in the ordering ≺L. This
means together with the observations about the bounds of e and h we made above, that
we have Ug ≥ Ue = Uh and Le ≥ Lh ≥ Lg. Thus e and h are both trivial: a contradiction.
Alternatively we consider h is in the cut TL \ e, where only edges at least as large as e are
contained. This means Le ≤ Lh and consequently Le = Lh. The edge h is in the cut TL \ e

and in the cut TU \ e, which means we have e ≺L h and e ≺U h. However, this contradicts
that the intervals of e and h are identical.

If e is not in TL and not in TU , then there is an edge h, which is in the cut T` \ e and in
the cycle in TL ∪ e. As it is in the cut, we have Le ≤ Lh and h non-trivial, and as it is in the
cycle we have Le ≥ Lh. Thus, we have Le = Lh and Uh ≥ Ue because of the ordering ≺L.
We choose h ∈ TL. As TL \ TU contains only trivial edges, edge h is also in TU . If h is not in
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the cycle TU ∪ e, there must be an edge g in TL \ TU that is in the cut TU \ h and in the
cycle TL ∪ e. This edge g is trivial, larger than h in the ordering ≺U and smaller than e in
the ordering ≺L. This means together with the observations about the bounds of e and h

we made above, that we have Ug ≥ Uh ≥ Ue and Lh = Le ≥ Lg. Thus e and h are both
trivial: a contradiction. Alternatively we consider h is in the cycle TU ∪ e, where only edges
with upper limit at most as large as e are contained. This means Uh ≤ Ue and consequently
Uh = Ue. The edge h is in the cycle TU ∪ e and in the cycle TL ∪ e, which means we have
h ≺L e and h ≺U e. However, this contradicts that the interval of e and h is identical.

Finally, we consider e ∈ TU \ TL. Then there is an edge h in the cut TU \ e and in the
cycle TL ∪ e. This means h ∈ TL \ TU and thus trivial. Additionally we have e ≺U h, h ≺L e,
which means Lh ≤ Le ≤ Ue ≤ Uh. However, this is a contradiction as e is non-trivial. J

Combined, this means Preprocessing (≺L,≺U ) queries every non-trivial edge in T` \ Tu.

I Theorem 9. Preprocessing (≺L,≺U ) queries the union over all edges queried by Pre-
processing (≺`,≺u) for all orderings ≺`,≺u. Thus, it queries the maximum number of
edges characterized by Theorem 5.

Proof. We show by induction over the number of iterations that edges queried in Prepro-
cessing (≺`,≺u) are also queried in Preprocessing (≺L,≺U ). By Lemma 7 and 8, all
edges queried in iteration 1 of Preprocessing (≺`,≺u) are also queried in our specific
preprocessing. Let e be an edge queried in iteration i > 1 of Preprocessing (≺`,≺u). Let S

be the set of all edges queried in the previous iterations. Then, by induction, the set S is
queried by Preprocessing (≺L,≺U ). Assume edge e is not queried by Preprocessing
(≺L,≺U ). We consider Preprocessing (≺`,≺u) in iteration i and additionally query all
edges which are queried by Preprocessing (≺L,≺U ). By Lemma 7 edge e is still in T` \ Tu

for this new uncertainty graph. However, this is exactly the uncertainty graph at the end of
Preprocessing (≺L,≺U ). Thus, the termination of the algorithm at this point contradicts
Lemma 8. J

3.1 Instances Solved by the Preprocessing
The preprocessing is a modification of the input instance and intuitively it simplifies it by
removing uncertainty. We note, however, that in theory it can lead to a worse algorithm
performance for specific input. Nevertheless, in our experiments, the preprocessing generally
improves the performance ratio of our algorithms. One class of our data sets is even solved
exactly by the preprocessing alone. We generalize this observation and characterize a family
of uncertainty graphs which can be completely solved by our preprocessing.

I Proposition 10. For uncertainty graphs, in which every cycle contains only edges with
identical lower limit or only edges with identical upper limit, Preprocessing (≺L,≺U ) finds
an optimal solution.

Proof. The proof is by contradiction. Assume Preprocessing (≺L,≺U ) terminates with
TL and TU and did not find a feasible query set. Then the uncertainty graph has a cycle C

on which it is unclear which edge has the largest weight. All but one edge of C are in TL.
Assume, that originally all edges on the cycle had the same upper limit. If there is only one
edge f with largest upper limit, all other edges on the cycle are trivial. Since it is unclear,
which edge has largest weight on C, f cannot also have the largest lower limit. Thus f is
non-trivial and in TL \ TU , which is a contradiction. Otherwise, there are two non-trivial
edges e and f on C with largest upper limit, e ∈ TL and f /∈ TU . This means we can define
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an alternative ordering ≺u with f ≺u e and thus e /∈ Tu. Thus, for the preprocessing with
orderings ≺L and ≺u we have e ∈ TL \ Tu. By Theorem 9 this means Preprocessing
(≺L,≺U ) queries e, a contradiction to e being non-trivial.

A cycle with identical lower limits can be treated analogously. J

4 Experimental Data

First, note that there is an inherent difficulty with practical experiments for exploration
uncertainty. For a practical application the uncertainty intervals might be known as well
as the exact edge weights of the queried edges. To decide the optimal number of queries
necessary, in general one needs the exact edge weights of further edges. However, in practice
there is no reason to explore additional edges after the solution has been found. Thus, even
though we have practical data we need to generate a part of the instance.

Telecommunication. For the telecommunication data we have 5 different graphs of varying
size with up to 1000 nodes available to us. For each of them we have two different sets
of uncertainty intervals. In the first set, the terrain data, we consider the building cost
uncertainty that arises from different terrains. The cost of a connection is limited by the
construction cost per meter cable through a field and the cost under a paved street times
the length of the connection. We draw the exact edge weight uniformly distributed in the
interval. In this uncertainty setting, exploring the exact weight of an edge represents the time
or cost investment it takes to identify the terrain of a particular connection. The second data
set we call existence data. This setting assumes that the terrain of the connection is known,
but it is uncertain if existing infrastructure is available or not. As a result the interval ranges
from almost no building cost due to existing infrastructure to a fixed building cost, which is
roughly known in advance. The exact edge weight follows a two-point distribution close to
the two endpoints of the interval. We maintain the ratio of 20% small weight to 80% large
weight that is observed in practice.

TSPLib. We consider the 19 graphs for the symmetric traveling salesman problem TSP of
the library TSPLib that have at most 100 nodes. They are usually used for TSP computations,
but we compute their minimum spanning trees. The library contains the exact edge weights
and we need to create corresponding uncertainty intervals. We choose the interval size
proportional to the weight of each edge, which is a natural approach that we also observe in
the telecommunication data. We experiment with the ratio between interval size and exact
edge weight, let us call this ratio d, to generate difficult instances. As before, we consider
intervals such that the realization is either uniformly distributed or two-point distributed at
the two extremes. For an edge with weight w we draw the lower limit L uniformly at random
in ((1− d) ·w, w) in the uniform case and set the upper limit U to L + d ·w. In the extremal
case we choose the lower limit close to the edge weight w such that L < w or we choose the
upper limit U close to w with w < U each with probability 1/2. Then we choose the other
limit accordingly. We computed the average competitive ratio of all three algorithms for the
two distributions and various values for d between 0.001 and 0.5 for 190 uncertainty graphs;
see Figure 6. As we are interested in a worst-case behavior, we choose for our experiments a
uniform value d = 0.065 for which all algorithms have a rather large competitive ratio.

As one aspect of our experimental analysis, we investigate for a given graph the variance of
certain parameters. We distinguish between the two data types: For the telecommunication
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Figure 2 Size of the optimal solution Opt divided by the number of edges on the y-axis and the
uncertainty graphs sorted by data set and increasing number of edges on the x-axis.

data the realization inside the uncertainty interval changes, while for the TSPLib data the
location of the fixed length uncertainty interval around the also fixed realization changes.

5 Experimental Algorithm Analysis

For the detailed analysis we draw 100 uncertainty intervals/realizations for each graph in a
data set, which yields 4800 instances in total. We perform our experiments with 20 repetitions
of Random per instance, as more repetitions did not alter the average performance. For each
of the instances we compute the number of edges, the size of the query set in the preprocessing,
the size of the optimal solution, the size of the query set for each of the three algorithms,
the run time of the three algorithms as well as that of the preprocessing. For Random
we additionally compute the average number of edges on a cycle closed in the algorithm
and the average number of edges on an algorithm cycle that have an uncertainty interval
overlapping the one of the edge with largest upper limit. For the latter two parameters, we
could not find a relation to the algorithm’s performance. We summarize our experimental
results in the following subsections. We make our code, the complete input and output data,
and further analysis available at http://www.coga.tu-berlin.de/fileadmin/i26/coga/
MSTData.zip.

5.1 The Optimal Solution
The size of the optimal solution Opt, that is, the minimum number of queries to find an
MST, naturally grows with the size of the instance. To analyze a correlation, we consider the
number of edges m as the instance size and determine the parameter Opt/m; see Figure 2.
There are instances among the telecommunication data for which the ratio Opt/m is as
large as 0.5 and other ones where it is very small. Among this small number of instances the
parameter behavior seems arbitrary. For the TSPLib data the ratio Opt/m is a lot smaller
and it decreases when m increases. Our theoretical analysis in Section 2.3 shows that for a
single instance the behavior of this parameter can change between 1/m and 1. We do observe
great variance for some instances of the telecommunication data, but very small variance for
the TSPLib data. The variance is always far from the theoretical maximum variance.

5.2 Comparing Deterministic and Randomized Algorithms
For the telecommunication data the competitive ratio of all three algorithms has roughly the
same average (cf. Figure 3). Averaging over all telecommunication instances Cycle and Cut
both have competitive ratio 1.18 and Random has the slightly worse competitive ratio of

http://www.coga.tu-berlin.de/fileadmin/i26/coga/MSTData.zip
http://www.coga.tu-berlin.de/fileadmin/i26/coga/MSTData.zip
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Figure 3 Average performance, i.e., the ratio of the algorithm query set size over the optimal
query set size, for the three algorithms and the two data sets.

1.22. For the TSPLib data, the two deterministic algorithms have equal average competitive
ratio 1.37, which is significantly larger than that for the telecommunication data. Random
has a notably smaller competitive ratio of 1.11 on average, that is even smaller than the
ratio for the telecommunication data.

All average competitive ratios are far from their theoretical worst-case guarantee which
is 2 for both deterministic algorithms and ≈ 1.707 for Random. It is somewhat surpris-
ing, that despite the significant improvement of our randomized over the deterministic
algorithms for the TSPLib data, there is no improvement for the telecommunication data.
This means the usefulness of randomization depends on the considered data set. For the
telecommunication data our way of randomization may even worsen the performance. This
might seem counter-intuitive, but we give a theoretical explanation in Section 2.2.

5.3 Comparing the Deterministic Algorithms
In Section 2.1 we show that there can be a large difference between the performance ratio of
Cycle and Cut, even to the extreme case where one has ratio 1 and the other has ratio 2.
However, as displayed in Figure 3, their average performance is identical for all graphs and
both data sets. On an instance by instance comparison, the two ratios are equal for 98% of
all instances we evaluate. The largest difference between performance ratios we observe in
our experiments are seven instances with difference 0.33 and one with difference 0.7.

5.4 Variance in Performance
We compare the average performance of an algorithm to the worst performance among the
best 25% of performances as well as the worst performance among the best 75% of all

show that the variance increases with the average performance ratio of an uncertainty
graph and it is greater for the deterministic algorithms than for Random. As the variance is
equal for Cycle and Cut, we only display the graph for Cycle. For almost every graph
individually, the variance between the different instances is very small.

5.5 Worst-Case Instances
Both deterministic algorithms have a competitive ratio of 2. In our experiments, this
worst-case ratio is attained for some instances for which the optimal query number is at
most 10. For the telecommunication data the worst-case is attained only on the pathological
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Figure 4 We show the variance of the average performance of Cycle for each uncertainty graph
by displaying the 25% Quantile, the average, and the 75% Quantile of the algorithm performance.

Figure 5 Variance of the average performance of Random for each uncertainty graph with the
25% Quantile, the average, and the 75% Quantile of the algorithm performance.

example of Graph 4 consisting of a single cycle. However, the 7 smallest of the 19 graphs of
the TSPLib data showcase instances with performance ratio 2. There are graphs, for which
more than half of the instances showcase a worst-case ratio 2, but for others it is only a small
percentage. The number of cases of ratio 2 roughly decreases with the number of edges in the
graph. This is not symmetric to the case of performance ratio 1. There are more instances
and more graphs for which there are instances which the algorithms solve optimally.

5.6 Comparing the Distributions

Preprocessing (≺L,≺U ) solves all telecommunication data instances with extreme distri-
bution. We prove this theoretically in Section 3 and observe that this is due to the interval
structure and not the distribution. In general, the share of instances solved by the prepro-
cessing significantly increases from uniform to extreme distribution. For the TSPLib data
the average share increases from 0.014 to 0.15 and for the telecommunication data it is 0.33
for the uniform distribution and 1 for the extreme one.

Additionally, we observe that the absolute number of queries almost always decreases,
when changing from uniform to extreme distribution for all telecommunication instances and
all algorithms. However, for the TSPLib data the behavior varies and for each graph there
are instances where the uniform distribution has a smaller query number and others where
the extreme distribution has a smaller query number.
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Figure 6 Average performance of the three algorithms for the TSPLib data for different values
of the parameter d = interval size over exact edge weight.

5.7 Interval Size

To create the TSPLib data, we experimented with different interval sizes. Figure 6 shows
that the algorithms’ performance changes greatly with the chosen ratio d of interval size
over edge weight. For very large parameter d, almost all intervals overlap and their edges
must be queried. For very small d, however, only few intervals overlap and almost no queries
are required. This is true for any algorithm, and thus, it explains why Cycle, Cut and
Random have an average competitive ratio near to 1 for very small and very large d.

5.8 Running Time

We run our experiments on a Linux system with an AMD Phenom II X6 1090T (3.2GHz)
processor and 8GB RAM. Together, the three algorithms take about 1200 milliseconds to
compute. The preprocessing dominates the run time with a duration of 770 milliseconds
on average. On a one-by-one comparison Cycle and Random have similar average run
times of around 20 milliseconds, but Cut’s average run time is around 350 milliseconds. As
expected, the run time increases with the graph size. In total, our data set of 400 instances
up to a size of 70 vertices or 3000 edges can be generated and solved in roughly four hours.
As we did not optimize the implementation in terms of run time, we expect that also larger
instances can be solved in reasonable time.
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