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ABSTRACT
Sequencing problems with an unknown covering or packing
constraint appear in various applications, e.g., in real-time
computing environments with uncertain run-time availabil-
ity. A sequence is called α-robust when, for any possible
constraint, the maximal or minimal prefix of the sequence
that satisfies the constraint is at most a factor α from an
optimal packing or covering. It is known that the covering
problem always admits a 4-robust solution, and there are in-
stances for which this factor is tight. For the packing variant
no such constant robustness factor is possible in general.

In this work we address the fact that many problem in-
stances may allow for a much better robustness guarantee
than the pathological worst case instances. We aim for more
meaningful, instance-sensitive performance guarantees. We
present an algorithm that constructs for each instance a so-
lution with a robustness factor arbitrarily close to optimal.
This implies nearly optimal solutions for previously studied
problems such as the universal knapsack problem and for
universal scheduling on an unreliable machine. The crucial
ingredient and main result is a nearly exact feasibility test
for dual-value sequencing with a given target function. We
show that deciding exact feasibility is strongly NP-hard,
and thus, our test is best possible, unless P=NP.

We hope that the idea of instance-sensitive performance
guarantees inspires to revisit other optimization problems
and design algorithm tailored to perform well for each indi-
vidual instance.
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1. INTRODUCTION
We study two complementary variants of a general dual-

value sequencing problem, one with an unknown covering
constraint, the other one with an unknown packing con-
straint. In both cases, we want to find a universal se-
quence of good quality for all realizations of the unknown
constraint. Such problems find applications in real-time
computing environments with uncertain run-time availabil-
ity such as medical diagnosis systems, automated trading
systems, and game-playing programs [1]. In particular, dual-
value sequencing with an unknown covering constraint has
been identified as a core subproblem when scheduling on an
unreliable machine [7] and in the context of online flow-time
scheduling [2].

In a geometric interpretation of the dual-value sequencing
problem (see Figure 1), we are asked to linearly arrange a
given set of rectangles defined by positive values xj and yj
along the positive x-axis. In the covering variant, a solution
is called α-robust, for some α ≥ 1, if, for all values t > 0, the
total sum of y-values of rectangles covering the interval [0, t]
is within a factor α of the least possible total y-value of such
a cover. In the packing variant, a solution is called α-robust,
for some α ≤ 1, if the total sum of y-values of rectangles that
can be packed into the interval [0, t] is within a factor α of
a maximum packing. In both cases we call α the robustness
factor of the solution.

For the packing variant there are instances that do not
admit solutions with constant robustness factor. A simple
example is a two-item instance with one small square and
one huge square. For the covering variant, Epstein et al. [7]
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Figure 1: Geometric interpretation of the dual-value sequencing problem.

designed an algorithm that returns a 4-robust solution, and
showed that there are instances with optimal robustness fac-
tor arbitrarily close to 4. Notice that these are absolute
bounds over all possible instances. Clearly many instances
admit a much better robustness factor than the overall worst
case. For example, the simple instance for the packing vari-
ant requires items with very large ratio of maximum and
minimum weight. Also the instance with optimal robust-
ness factor close to 4 in the covering version [7] is highly
structured, it uses items with exponentially large values, and
is arguably very unlikely to occur in practice. To address
such limitations in the meaningfulness of a general perfor-
mance guarantee, we propose to find solutions with the best
robustness factor on an instance-by-instance basis. For a
given input instance (a set of items), we are interested in
the robustness factor achievable for this particular instance
instead of over all possible instances. We call our approach
instance-sensitive robustness guarantees.

Our main contributions are polynomial time approxima-
tion schemes that find for any instance a solution with nearly
optimal robustness factor for the packing and the covering
variants of the dual-value sequencing problem.

Our approach of approximating an (unknown) instance-
sensitive guarantee allows us to circumvent pathological in-
stances while still maintaining a worst-case perspective. It
is worth noting that this approach can be applied to other
optimization problems where a (large) absolute approxima-
tion or competitive ratio has been found to be tight for a
certain subclass of instances. As our work shows, it may still
be possible to get better solutions by focusing on instances-
sensitive guarantees. It is worth noting that this approach
has been pursued, albeit not in a systematic way, in other
contexts such as low-distortion embeddings of metrics into
geometric spaces, e.g., in [6], subset selection problems [14],
and earliest arrival network flows [9]. We hope that our work
stimulates further research on instance-sensitive worst-case
guarantees for other combinatorial optimization problems.

Overview of our results.
We give nearly optimal instance-sensitive performance

guarantees for dual-value sequencing with an unknown pack-
ing and covering constraint. Our main contribution is a
polynomial time approximation scheme (PTAS) that con-
structs for any instance and any ε > 0 a solution with a ro-
bustness factor within 1+ε of the optimal factor for the input
instance. For the covering problem, this contrasts a previ-
ous algorithm that achieves a factor of 4 for all instances [7].
For the packing variant, this is, to the best of our knowl-
edge, the first positive result for general instances. Our al-

gorithm also computes the unknown optimal robustness fac-
tor for a given instance up to any desired accuracy. These
results imply directly instance-dependent (nearly) optimal
solutions for universal scheduling on an unreliable machine
to minimize

∑
wjf(Cj), for non-negative, non-decreasing

cost functions f , and for determining universal or incremen-
tal knapsack solutions.

The crucial ingredient of our algorithm, and the main
result of the paper, is an approximate feasibility test for
dual-value sequencing with a given target function. For a
given instance J and a function Z : R+ → R+, the task
is to decide, if there is a sequence of rectangles such that,
for any t > 0, the total sum of y-values of rectangles
whose x-values cover (can be packed in) the interval [0, t]
is at most (least) Z(t). Our approximate feasibility test
outputs, for a given target function Z(t) and a precision
parameter ε > 0, a sequence that achieves for any cover-
ing/packing constraint t a total y-value which is not more
than a factor 1 + ε above/below Z(t), or reports that there
is no sequence with a value above/below Z(t) for all t. We
believe that this result is of independent interest. On the
negative side, we show that deciding exact feasibility for
dual-value sequencing with an arbitrary target function is
strongly NP-hard.

The high-level idea behind our approximate feasibility test
is as follows. First, the target curve Z(t) is replaced with

a simpler step function Z̃ that approximates it. Then, dy-
namic programming is used to assign some items with“large”
y-value to each step. The remaining gaps are filled with
“small” items by allowing a carefully limited fractional as-
signment in which such items can be split across several
steps. Finally, this fractional solution is converted into a
proper sequence at the expense of a small multiplicative vi-
olation of the target curve. A major hurdle in carrying out
this plan is the large number of steps in Z̃ which prohibits to
guess the placement of all large items in one shot. Instead,
each DP state stores the large items in only a constant num-
ber of steps; global consistency is achieved through a careful
recursive definition of the state values.

We note that standard rounding techniques for knap-
sack problems do not seem to be amenable to our problem:
A round-off error of the y-value of an item could be at the
same time negligible with respect to a tall step and pro-
hibitive with respect to a short step; similarly it is not clear
how to round the x-value without potentially significantly
affecting the robustness factor of the instance. For this rea-
son, our algorithm works directly with the input values and
avoids any rounding.



Related work.
Our work falls broadly in the field of optimization under

uncertainty, in particular robust optimization in an online
environment, and it builds on the concepts of universal so-
lutions [7, 13] and incremental solutions [15, 16].

The notion of α-robustness was introduced by Hassin and
Rubinstein [11] in the context of cardinality-robust solutions
for maximum independent set problems. A related knapsack
variant with an uncertain cardinality bound has been stud-
ied recently in [14]. It has been shown that any knapsack
instance I admits a ν(I)-robust solution, where ν(I) is the
rank of the knapsack system corresponding to I [11], and it
is NP-hard to decide if a given instance admits an improved
or even optimal robustness factor [14]. On the positive side,
there is an FPTAS that finds solutions with nearly optimal
robustness factor [14]. We note that these results do not
apply to our problem. Their setting is somewhat simpler
than ours since it is really a subset selection problem: Once
a feasible set of items has been chosen, the optimal sequence
is to order them by decreasing profit.

Other robust variants of the knapsack problem have been
studied extensively from various perspectives, see, e.g., [3–
5, 19]. These models differ from ours as the uncertainty
lies typically in item sizes and/or profits and the task is to
find a fixed subset that is feasible in all scenarios. Closest
to our work is a size-robust knapsack variant in which only
the knapsack capacity underlies uncertainty, which has been
studied in [4] from a computational point of view.

In the universal knapsack problem we ask for robust so-
lutions in a different sense: Given a set of items with non-
negative sizes and profits, the task is to find a permutation
that maximizes the total profit of items that fully fit into the
knapsack for an unknown capacity. This problem is exactly
dual-value sequencing with an unknown packing constraint.
The notion of incremental solutions differs from universal
solutions in the limited (constant) number of scenarios for
the uncertain capacity constraint. The incremental knap-
sack problem has been studied in [10]. The authors give an
FPTAS for approximating the optimal robustness factor for
the special case of proportional profits.

Universal sequencing on an unreliable machine refers to
scheduling problems in which a given set of jobs is to be
executed on a machine that may unpredictably change its
processing speed or becomes fully unavailable for periods of
time. The goal is to find a sequencing of the jobs that per-
forms well under any machine behavior with respect to some
cost function. The problem of minimizing

∑
j∈J wjf(Cj),

for non-negative, non-decreasing cost functions f , has been
studied in [7]. The authors propose an algorithm (with poly-
nomial running time) that constructs a permutation that
is (4 + ε)-robust for all machine behaviors. Interestingly,
the solution is the same universal sequence independently
of the cost function f . This result is tight, even when the
particular cost function is fixed. To obtain this universal
sequencing result, Epstein et al. [7] relate the problem of
universally scheduling on an unreliable machine to sequenc-
ing to minimize the remaining weight in the system, which
corresponds to the covering variant of dual-value sequencing
with a cost function expressed on the reverse sequence. This
problem also plays a role in online flow-time scheduling [2].

Other related problems occur in real-time systems where
the available computing time is uncertain and the output
quality for each job improves as the spent execution time

increases. Incremental problem-solving techniques, in par-
ticular, contract algorithms [1, 18, 20], play an important
role. However, these problems differ from ours since mul-
tiple copies of a job can be scheduled for different durations
and the evaluation function that is based on the computa-
tion time that has been spent on each job.

Outline of the paper.
In Section 2 we define the two problems of dual-value se-

quencing with uncertain covering and with uncertain pack-
ing constraints. We also state our main results and their
relation to scheduling on an unreliable machine and the uni-
versal knapsack problem. In Section 3 we describe the gen-
eral algorithmic framework for our PTAS for the dual-value
sequencing problem. Here we focus on the covering variant.
The key routine within the PTAS is an approximate feasi-
bility test for the dual-value sequencing problem with given
target function which we provide in Section 4. This key re-
sult is best possible since deciding feasibility is NP-hard as
we show in Section 5. In Section 6 we argue how the main
results can be obtained for the problem with an unknown
packing constraint. We conclude with open problems and
an outlook in Section 7.

2. FORMAL STATEMENT OF OUR PROB-
LEMS AND MAIN RESULTS

2.1 Problem definitions
An instance of a dual-value sequencing problem is a set

of items J = {1, . . . , n} with two values xj > 0 and yj ≥ 1.
Let x(J ′) =

∑
j∈J′ xj and y(J ′) =

∑
j∈J′ yj , for any J ′ ⊆ J .

We denote by X = x(J) and Y = y(J). For two functions F
and G of t we use the shorthand notation F ≤ G to denote
F (t) ≤ G(t) for all t. For a function F of t and for a scalar
α, we use α · F to denote the function mapping t to αF (t).

The problem of dual-value sequencing with an uncertain
covering constraint is to minimize the cost function of accu-
mulated y-value for any covering constraint on the x-values.
More precisely, we define for a given sequence π the cost
function:

Y π(t) = min
j:x(π({1,...,j}))≥t

y(π({1, . . . , j})).

A point-wise lower bound is Y ∗(t) = minπ Y
π(t). In general

there is no sequence that satisfies Y π = Y ∗. Instead, our
goal is to find a sequence π such that the maximum deviation
from Y ∗ is minimized. A sequence π is α-robust if Y π ≤
α · Y ∗. A sequence is optimal-robust if it obtains a best
possible (or optimal) robustness factor for J :

α∗(J) = min
π

max
t

Y π(t)

Y ∗(t)
.

The variant with an uncertain packing constraint is to max-
imize the cost function of accumulated y-value for any pack-
ing constraint on the x-values. For a sequence π, we define

Ȳ π(t) = max
j:x(π({1,...,j}))≤t

y(π({1, . . . , j})),

and let Ȳ ∗(t) = maxπ Ȳ
π(t) denote the function of upper

bounds for all packing constraints. A sequence π is α-robust
if Ȳ π ≥ α · Ȳ ∗. A sequence is optimal-robust if it obtains an



optimal robustness factor for J :

α∗(J) = max
π

min
t

Ȳ π(t)

Ȳ ∗(t)
.

2.2 Main results
We efficiently find a nearly optimal-robust sequence for

both the covering and packing variants.

Theorem 1. Given an instance J of the dual-value se-
quencing problem, there are polynomial time approximation
schemes that compute, for any ε > 0, a (1+ ε) ·α∗(J)-robust
covering solution and a (1 − ε) · α∗(J)-robust packing so-
lution, respectively. The algorithms also compute the exact
value of α∗(J) up to an accuracy factor of 1 + ε.

Dual-value sequencing with an uncertain covering con-
straint was identified as a key subproblem of universal se-
quencing on an unreliable machine with the objective of
minimizing

∑
j∈J wjf(Cj) for non-decreasing, non-negative

cost functions f [7]. In particular, there is a one-to-one cor-
respondence of performance guarantees for any instance [7,
Lemma 1]. Thus, our new algorithm implies directly the
following nearly optimal instance-sensitive results.

Corollary 1. There is a PTAS for approximating
instance-wise the best possible competitive ratio for univer-
sal sequencing to minimize

∑
j∈J wjf(Cj) for all machine

behaviors and all non-decreasing, nonnegative functions f
simultaneously.

Dual-value sequencing with uncertain packing constraint
is precisely the universal knapsack problem with x-values as
item sizes and y-values as profits.

Corollary 2. There is a PTAS for approximating the
optimal robustness factor for the universal knapsack prob-
lem.

3. PTAS FOR DUAL-VALUE SEQUENC-
ING WITH COVERING CONSTRAINT

For a given dual-value sequencing instance J , we know
neither the optimal robustness factor α∗(J) nor the func-
tion Y ∗. In fact, even computing a single point of Y ∗ is a
knapsack problem by itself and its space complexity (number
of different values) of Y ∗ can be exponential on the number
of items [17]. Therefore, we use a simplified approxima-
tion of Y ∗ depending on the parameter ε > 0 which we
compute as follows. Let t∗i be the smallest value such that
Y ∗(t∗i ) ≥ (1 + ε′)i. Using an FPTAS for knapsack [12], we
can find in polynomial time values ti ∈ [t∗i , t

∗
i+1). We de-

fine a new curve Z∗(t) = (1 + ε′)i+1 for t ∈ [ti−1, ti), which
satisfies Y ∗ ≤ Z∗ ≤ (1 + ε′)2 · Y ∗.

Our algorithm now does a binary search on the robustness
factor by testing feasibility for multiples of the curve Z∗.
The crucial ingredient of our approximation scheme is an
approximate feasibility test that outputs, for a given target
function Z and a precision parameter ε > 0, a sequence π
such that Y π ≤ (1 + ε) · Z, or reports that there is no π∗

such that Y π
∗
≤ Z. We provide such a test in Section 4,

but now we show how to use it to approximate the optimal
robustness factor.

Theorem 2. Given an instance J , ε > 0 and a (1 + ε)-
approximate feasibility test, there is a PTAS that computes
a (1 + ε) · α∗(J)-robust solution for dual-value sequencing
with an unknown covering constraint. Furthermore, the al-
gorithm computes a value α with α∗(J) ≤ α ≤ (1+ε)·α∗(J).

Proof. Let ε′ = ε/8. First, we compute an approxima-
tion of Y ∗(t) such that Y ∗ ≤ Z∗ ≤ (1 + ε′)2 · Y ∗ as de-
scribed above. Then we perform binary search for α∗(J) in
the interval [1, 4] up to the desired level of accuracy. In
iteration i ∈ {1, 2, . . .} we test αi, the mid-point of the
current pinning interval, by running the approximate fea-
sibility test with accuracy parameter ε′ on the target func-
tion Zi = αi·Z∗. After k = dlog 3/ε′e iterations the length of
the search interval for α∗(J) has reduced to ε′. We consider
three cases.

(a) Suppose that all feasibility tests were positive. In this
case, 1 ≤ α∗(J) ≤ αk ≤ 1 + ε′, and thus, the solution
sequence returned in last iteration is (1 + ε′) · α∗(J)-
robust. Let α = αk.

(b) Suppose that all feasibility tests returned a negative
answer. In this case we know that 4−ε′ ≤ αk < α∗(J).
Algorithm Double in [7] is guaranteed to return a
solution with robustness 4+ε′ in polynomial time. We
let this be our final solution and set α = 4.

(c) In the remaining case, let i denote the last iteration
that returned a positive answer and let i′ denote the
last iteration with a negative answer. Then α∗(J) ∈
[αi′ , αi] and αi ≤ (1 + ε′)α∗(J). Let α = αi. The
sequence π returned in iteration i satisfies

Y π ≤ (1 + ε′) · α · Z∗ ≤ (1 + ε′)2 · α∗(J) · Z∗

≤ (1 + ε′)4 · α∗(J) · Y ∗.

In all cases, our choice of ε′ guarantees that the computed
sequence is (1 + ε) ·α∗(J)-robust for all ε < 4. Furthermore,
the value α approximates the optimal robustness factor ar-
bitrarily well, i.e., α∗(J) ≤ α ≤ (1 + ε) · α∗(J).

Together with Theorem 3 in Section 4 this implies the
covering result stated in Theorem 1.

4. A NEARLY EXACT FEASIBILITY TEST
FOR A GIVEN TARGET FUNCTION

In this section we show that there is an approximate feasi-
bility test for the covering variant of the dual-value sequenc-
ing problem with a given target curve.

Theorem 3. For any fixed ε > 0, there is polynomial
time approximate feasibility test for the dual-value sequenc-
ing problem with a given target curve Z that either reports
that there is no π∗ such that Y π

∗
≤ Z, or it outputs a per-

mutation π such that Y π ≤ (1 + ε) · Z.

In order to describe our algorithm we need to introduce
the concept of fractional sequencing where we allow items
to be split into smaller proportional items; more precisely,
an item (xj , yj) can be split into items (x1j , y

1
j ), . . . , (xaj , y

a
j )

such that xj = x1j +x2j + · · ·+xaj and xj/yj = x1j/y
1
j = · · · =

xaj /y
a
j . We will use π̂ to denote a fractional sequencing of a

set of items J .



Algorithm 1 approximate feasibility test(J, Z, ε)

1. Simplify Z into a step function Z̃ such that Z̃ ≤ (1 + ε) · Z
2. Try to find a restricted fractional sequencing π̂ such that Y π̂ ≤ (1 + ε) · Z̃
3. if π̂ was found then
4. Compute a sequencing π such that Y π ≤ Y π̂
5. return π
6. else
7. return “Z is not attainable”

Figure 2: Algorithm to approximately test feasibility

At a very high level, our algorithm consists of three
steps: First, the input target curve Z is simplified into

a step function Z̃ where the steps are powers of (1 + ε)

such that Z̃ ≤ (1 + ε)Z; second, we attempt to find a frac-

tional sequencing π̂ such that Y π̂ ≤ (1 + ε) · Z̃ having the
property that no “large” item is split and the splitting of
the remaining items obeys further restrictions (details of
these restrictions are given in Section 4.2); third, from π̂
we compute a proper (non-fractional) sequencing π such
that Y π ≤ (1+ε)·Y π̂. If Step 2 fails, we will get a certificate

showing that there is no π such that Y π ≤ Z̃. Otherwise,
the algorithm is guaranteed to output a solution π such that
Y π ≤ (1+ε)3 ·Z. The pseudo-code for the algorithm is given
in Figure 2

The next three subsections explain how each of these steps
is carried out. The final subsection provides the proof of
Theorem 3.

4.1 Simplifying the input target curve
As a first step in the development of our algorithm we sim-

plify the target curve Z by turning it into a step function1.
Let ti be the smallest value such that Z(ti) ≥ (1 + ε)i. We

define a new curve Z̃(t) = (1 + ε)i for t ∈ [ti−1, ti). Clearly

Z̃ ≤ (1 + ε) · Z, as desired. We consider Z to be part of
the input, so computing the ti values is trivial (in contrast
to the similar approximation of the unknown curve Y ∗ in
Section 3).

We call [ti−1, ti) the ith step of Z̃. Given a (perhaps frac-
tional) sequencing, we say that an item j is assigned to step i,
if when linearly arranging the items in the interval [0, x(J)]
according to the sequencing, the left endpoint of j (viewed
as a rectangle) belongs to the ith step.

We say an item j is large for step i if yj > (1+ε)i/`, where
` is set to ε−2. Similarly, we say an item j is medium for step
i if yj ∈ [(1+ ε)i/`2, (1+ ε)i/`], and small if yj < (1+ ε)i/`2.
We denote by Li, Mi, and Si the set of large, medium,
and small items for step i respectively. For brevity we may
omit the particular step when we refer to large, medium, or
small items in a high level description whenever the step in
question is clear from the context.

4.2 Computing a fractional sequencing
Our aim is to find a fractional sequencing such that (i) at

most one new item is split per step and (ii) such an item

1We describe here the feasibility test for an arbitrary target
function. When using it as a subroutine for the approxima-
tion scheme in Section 3, then we omit this first simplifica-
tion step since the input is already a step function.

is not large for that step. By at most one new split item
per step, we mean that at most one item can be split for the
first time in this step. The total number of items that appear
fractionally in the ith step is then bounded by i. We show
that if there is a proper (non-fractional) sequencing π such

that Y π ≤ Z̃ then we can find such a fractional solution π̂
where Y π̂ ≤ (1 + ε) · Z̃.

To find such a restricted fractional sequencing we develop
a dynamic programming algorithm (DP) that assigns large
(and some medium) items to steps such that (ii) is guar-
anteed. Based on this assignment we construct a partially
fractional sequence π̂ with the desired properties (i) and (ii).

Our DP states are defined by a tuple
[i, Ai, Ai−1, . . . , Ai−k, B], where Aj ⊆ Mj ∪ Lj
for j = i − k, . . . , i and B ⊆ Mi ∪ Li are disjoint sets. A
state can either be invalid, or valid; for the latter case we
associate a finite value T [i, Ai, Ai−1, . . . , Ai−k, B] ≥ ti. We
set k = log1+ε `, so that (1 + ε)i = `(1 + ε)i−k. The index i

ranges from k+ 1 to imax =
⌈
log1+ε y(J)

⌉
. Notice that with

this choice of k we have the property that Si ∪Mi = Si+k
for all steps i.

We say that a proper or fractional sequencing follows the
DP state [i, Ai, . . . , Ai−k, B] if the items in Aj are assigned
to step j for j = i, . . . , i− k and items in B are assigned to
step i − k − 1 or earlier without splitting any item in Ai ∪
· · · ∪Ai−k ∪B.

The high level idea behind a DP state [i, Ai, . . . , Ai−k, B]
is as follows. If the state is invalid, then we have a certificate
that there is no proper solution π that follows the state and

satisfies Y π(t) ≤ Z̃(t) for all t ∈ [0, ti]. If the state is valid,
then we will be able to produce a partial fractional solution
that spans at least [0, ti] and follows the state such that the
gaps left by the items Ai ∪ · · · ∪Ai−k ∪B can be filled using

items in Si while staying under the curve Z̃ during [0, ti].
Furthermore, T [i, Ai, . . . , Ai−k, B] is the smallest total x-
value of such a solution among a certain subset of solutions
that includes all proper partial solutions. We spend the rest
of this section formalizing this high level description.

To verify if a DP state is valid we will fill the gaps left
between the large and medium items by fractionally as-
signing small items (details follow below). To that end,
let FK (J ′, x′) be the minimum possible total y-value that we
would observe in a (unrestricted) fractional solution to the
knapsack-type problem where we are allowed to use items
from J ′ ⊆ {1, . . . , n} and we want to cover a total x-value
of x′. Notice that such a minimum value solution is achieved
by a greedy algorithm that packs items in non-decreasing ra-



tio of
yj
xj

for j ∈ J ′, with perhaps the last item being packed

fractionally.

Formal definition of DP states.
First consider a state [k + 1, Ak+1, . . . , A1, ∅]. Let Q =

Ak+1∪· · ·∪A1. We will build a partial sequencing of items Q
and fill possibly remaining gaps in each step using items
in Sk+1 \Q, which are small in step k + 1, as follows. First
we assign the items in A1. If x(A1) < t1, we fill the gap
until t1 using items in Sk+1 \ Q. This is done by greedily
choosing the items with the best

yj
xj

ratio first and possibly

splitting a single item at t1. If there are not sufficiently
many items in Sk+1 \ Q to fill the gap until t1, or if the
total y-value assigned to the first step exceeds 1+ ε, then we
stop and mark the state as invalid. Otherwise we continue
with A2; we place all items in A2 in step 2 and again fill any
eventual gap until t2. This continues until either the state is
declared invalid or we are done sequencing Ak+1. Let τk+1

denote the x-span of the current partial sequencing, i.e., the
total x-value of all items assigned so far. If all items Aj start
in step j for j = 1, . . . , k + 1 and the total accumulated y-
value of A1∪· · ·∪Aj and the small, possibly split items is at
most (1 + ε)j for j = 1, . . . , k + 1, then we declare the state
valid and set T [k + 1, Ak+1, . . . , A1, ∅] = τk+1. Notice that
the T -value of the DP state can equal ti (if there was a gap
in the last step) or be strictly larger than ti (if the last item
in Ak sticks beyond ti). Otherwise, the value of the state is
declared in invalid.

Now consider a state [i, Ai, . . . , Ai−k, B] for i > k + 1.
Then we define

T [i, Ai, . . . , Ai−k, B] = min
A′,B′

τ, (1)

where [i − 1, Ai−1, . . . , Ai−1−k, A
′, B′] is a valid DP state,

and

τ = max
{
ti, T [i− 1, Ai−1, . . . , Ai−k, A

′, B′] + x(Ai)
}
,

provided that

x(Si \Q) ≥ τ − x(Q)

and

y(Q) + FK(Si \Q, τ − x(Q)) ≤ (1 + ε)i,

where Q = Ai ∪ · · · ∪Ai−k ∪B.
This last condition guarantees that the gaps left after as-

signing Q can be filled greedily using items in Si \ Q while
keeping the accumulated y-value under (1 + ε)i.

Feasibility condition.
Now suppose that there is a valid state

[imax, Aimax , . . . , Aimax−k, B]. In this case, we say the
DP is feasible. The next lemma shows that if there is a

proper solution that stays under Z̃ then the DP is feasible.

Lemma 1. If there is a sequence π∗ such that Y π
∗
≤ Z̃,

then the DP is feasible.

Proof. Let Ai be the set of medium and large items as-
signed to step i in π∗. Let B = (A1 ∪ · · · ∪ Ai−k−1) \ Si
and B′ = (A1 ∪ · · · ∪ Ai−k−2) \ Si−1. Let τ∗i be the maxi-
mum of ti and the rightmost point of items in Ai. We show
by induction the state [i, Ai, . . . , Ai−k, B] is valid; further-
more, T [i, Ai, . . . , Ai−k, B] ≤ τ∗i .

The base case is i = k + 1. Let Q = Ak+1 ∪ · · · ∪ A1.
Consider the following transformation to π: First, we lin-
early arrange the items (viewed as rectangles) according to
π; second we remove all items not in Q, while keeping Q
in place; third, for j = 1, . . . , k, we slide items Aj as much
to the left as possible without leaving their assigned step;
forth, we greedily and fractionally fill the gaps in [0, tk+1]
using items in Si+1 \ Q. Originally, those gaps used to be
filled with items in Si+1 \ Q and were larger before the
shifting was performed. Since the original solution stayed

under Z̃ in [0, ti], so does the new partial fractional solu-
tion. Therefore, the state [k + 1, Ak+1, . . . , A1, ∅] is valid
and T [k + 1, Ak+1, . . . , A1, ∅] ≤ τ∗k+1.

For the recursive step, i > k+1, let Q = Ai∪· · ·∪Ai−k∪B.
First we note that assuming T [i−1, Ai−1, . . . , Ai−1−k, B

′] ≤
τ∗i−1, we can conclude that T [i, Ai, . . . , Ai−k, B] ≤ τ∗i by (1),
provided the state is indeed valid. As we did before, suppose
we remove all items not in Q and we fractionally fill the gaps
using items in Sk+1 \ Q. Clearly the y-value accumulated
at τ∗i cannot be more than before, which was at most (1+ε)i

by virtue of Y π
∗
≤ Z̃. In other words,

y(Q) + FK(Si \Q, τ∗i − x(Q)) ≤ (1 + ε)i,

so the test in (1) is successful and thus the state is valid and
T [i, Ai, . . . , Ai−k, B] ≤ τ∗i .

This holds for all i, and in particular for imax; so it follows
that the DP is feasible.

Extracting a fractional solution.
If the DP is feasible then there must be a chain of states

τk+1 = T [k + 1, Ak+1, . . . , A1, ∅]
τk+2 = T [k + 2, Ak+2, . . . , A2, Bk+2]

...

τimax = T [imax, Aimax , . . . , Aimax−k, Bimax ]

such that each one attains the minimum in (1) for the next
state, where Bi = (Ai−k−1 ∪ · · · ∪A1) \ Si.

Notice that such a chain of states specifies a sequence of
disjoint sets A1, . . . , Aimax . Given this sequence, we build
a fractional solution as follows. First we assign items in Ai
to [τi−1, τi−1 + x(A)] for i = 1, . . . , imax. Then, we fill the
gaps using the remaining non-large items in a greedy fash-
ion: When trying to fill a gap in step i we choose a yet-
unassigned item j minimizing

yj
xj

with yj ≤ (1 + ε)i/`, that

is, we restrict ourselves to items that are not large in the cur-
rent step. We call this algorithm Restricted Fractional
Knapsack (rfk) because we restrict the set of items we
can used in each step and we fix some items (the large and
medium items in each step chosen by the chain of DP states)
in advance. Notice that by this construction of the solution,
an item can only be split at the end of a step and that such
an item cannot be large in that step. We denote this solution
as π̂.

Lemma 2. If the DP is feasible then rfk produces a frac-

tional solution π̂ such that Y π̂ ≤ (1 + ε) · Z̃. Furthermore,
in π̂ at most one new item is split per step and such an item
is not large in that step.

Proof. First we argue that the algorithm indeed pro-
duces a solution when the DP is feasible. Notice that this is



not immediately obvious since the algorithm may not have
enough non-large items to fill the gaps left after assigning
the items in A1, . . . , Aimax . Suppose, for the sake of con-
tradiction that the algorithm cannot fill the gap at some
step i, and this is the first time this happens. Let Q =
Ai∪· · ·∪Ai−k∪Bi. By the definition of T [i, Ai, . . . , Ai−k, Bi]
we are guaranteed that x(Si \ Q) ≥ τi − x(Q). Since rfk
successfully filled the gaps up to step i− 1 and it is allowed
to use in step i any item in (Si ∪Mi) \Q, it can fill also the
gap in step i. We have reached a contradiction, so rfk can
fill all gaps.

The fact that at most one non-large new item can be split
at each step follows directly from the definition of rfk. It
only remains to show that the fractional solution stays below

(1+ε)·Z̃. We show this by induction on the number of steps.
Our base case is the first state in the chain of feasible

states, T [k + 1, Ak+1, . . . , A1, ∅]. Let Q = Ak+1 ∪ · · · ∪ A1.
Notice that the procedure used to establish the validity of
the state places items A1, . . . , Ak+1 in the same place as
rfk; however, it uses items in Sk+1 \ Q to fill the gaps,
while rfk is allowed to use items (S1 ∪M1) \ Q = Sk+1 \
Q in step 1, and items Sk+2 \ Q in step 2, etc. In other
words, the greedy procedure used to establish the validity
of [k + 1, Ak+1, . . . , A1, ∅] is more restricted than rfk in its
choice of items to fill the gaps. Therefore, the accumulated
y-value by rfk is less than the accumulated y-value by the
procedure defining the state, which in turn is guaranteed to

be stay below Z̃ in [0, τk+1].
For the inductive case (step i > k + 1) we show that

Y π̂(τi) ≤ (1 + ε)i+1, assuming that the property holds for
earlier steps. Let Q = Ai ∪ · · · ∪ Ai−k ∪ Bi. By inductive
hypothesis, it follows that Y π̂(τi−k−1) ≤ (1 + ε)i−k. Notice
that π̂ places Ai−k ∪ · · · ∪Ai in the interval [τi−k−1, τi] and
fills any eventual gap with items that are not large at each
step. As we argued in the base case, the procedure used to
define T [i, Ai, . . . , Ai−k, Bi] uses a greedy algorithm to fill
these gaps with items in Si and that such an algorithm is
more restricted than rfk in its choice of items during the
interval [τi−k−1, τi]. It follows that the total gain in y-value
by rfk to fill the gaps in [τi−k−1, τi] is at most the gain of
the greedy procedure to fill the gaps in [0, τi], which is at
most FK (Si \Q, τi − x(Q)). Therefore,

Y π̂(τi) ≤ (1 + ε)i−k + y(Q \Bi) + FK (Si \Q, τi − x(Q))

≤ (1 + ε)i/`+ y(Q) + FK (Si \Q, τi − x(Q))

≤ ε2(1 + ε)i + (1 + ε)i

= (1 + ε)i+1

where the second to last inequality follows from the facts
that T [i, Ai, . . . , Ai−k, Bi] is a valid state and ` = ε−2.

4.3 Turning a fractional solution into a feasi-
ble sequence

Suppose we obtained a fractional solution π̂ as described
in Lemma 2. Now we show how to turn it into a proper
sequence by increasing the accumulate y-value by at most a
factor 1 + ε.

Lemma 3. For a given a fractional solution π̂ such that

Y π̂ ≤ (1 + ε) · Z̃, having at most one new split item per step
and only for items that are not large, let π be the proper
solution that orders the items by their first occurrence in π̂.

Then Y π ≤ (1 + ε)2 · Z̃.

Proof. Consider some t ∈ [ti−1, ti) in step i. We show
that when going from π̂ to π, the increase in the accumulated

y-value at t is bounded by ε · (1 + ε)i = ε · Z̃(t). Only
items that were split in π̂ and that where partially assigned
in steps 1, 2, . . . , i − 1 may contribute additional y-volume
to this increase. We know that there is at most one new
split item per step and that such an item is not large in
the respective steps, i.e., the new split item in step a has y-
value at most (1 + ε)a. Therefore, the total increase in the

accumulated y-value in step i is at most
∑i−1
a=1(1 + ε)a/` ≤

(1+ε)i/(ε`). Since ` = ε−2, we have that π satisfies Y π(t) ≤
(1 + ε)i + (1 + ε)i/(ε`) = (1 + ε)2 · Z̃(t) for any t in step i,
and thus for all t.

4.4 Summarizing the feasibility test and proof
of Theorem 2

In summary, our approximate feasibility test proceeds as

follows. First, we simplify the target curve and compute Z̃ ≤
(1 + ε)Z, for a given ε > 0. Then we run the DP. If the
DP is not feasible, then by Lemma 1 it follows that the
instance is not feasible, so we can report so. Otherwise, if
the DP is feasible, then by Lemma 2 we can find a fractional

solution whose accumulated y-value stays below (1 + ε) · Z̃.
Finally, this fractional solution can be turned into a proper
sequencing π at the cost of an additional factor (1+ ε) using
Lemma 3. Thus, π satisfies Y π ≤ (1 + ε)3 ·Z. Adjusting the
parameter ε according to the desired accuracy of the test,
proves one part of the claim of Theorem 3.

It remains to show that the running time of the algorithm
is for any fixed ε > 0 is polynomial in the input encod-
ing. Rounding the target function, which we assume to
be encoded polynomially in the dual-value sequencing in-
stance J , requires polynomial time since we have to solve
at most log1+ε y(J) knapsack problems each with running

time O(n3/ε) [12]. The computational effort for our DP

is O(log1+ε y(J)n(k+2)`2). To see that, observe that by def-

inition there can fit at most `2 large and medium items in
each step. In each state we store the large-and-medium-item
assignment for k+ 1 steps, and we have in total log1+ε y(J)
steps. To compute the value of a DP state of the form [i, ∗]
we need to inspect all compatible states of the form [i−1, ∗],
which involved trying all possible choices of medium and
large items for step i−k−1. With our choices of k = log1+ε `

and ` = 1/ε2, the total running time is polynomial in the
input encoding of J for any fixed ε > 0. This concludes the
proof of the covering part of Theorem 3.

5. HARDNESS OF TESTING EXACT FEA-
SIBILITY FOR A GIVEN TARGET
FUNCTION

In this section we show that the (1 + ε)-approximate fea-
sibility test in Theorem 3 is best possible. We prove that
the problem of deciding exact feasibility for a given target
curve is strongly NP-hard.

Theorem 4. Given an instance of the dual-value se-
quencing problem with a given target curve T it is strongly
NP-hard to decide if there is a sequence π with Y (t)π ≤ T (t)
for all t. This is true even in the case of proportional values
and when the encoding length of the target function is linear
in the remaining input.



Proof. The proof is by reduction from 3-partition:
given a set of integers {a1, . . . , a3n}, does there exist a parti-
tion into triples such each triplet add up to the same value A.
It is well known that this problem is strongly NP-hard even
when all integers are in the range (A/4, A/2) [8]. We con-
sider only 3-partition instances having this property.

Given an instance of 3-partition, we build a dual-value se-
quencing instance where each number aj induces an item
with values xj = yj = aj . The target function is set
to T (t) = A

⌈
t
A

⌉
. It is worth pointing out that in this case

the target curve T is given to us explicitly and its complexity
is linear on the number of items.

It is easy to see that there is a sequence π of all items
such that Y (t)π ≤ T (t), for any t ≥ 0, if and only if the
3-partition instance admits a partition into triples adding
up to A.

6. DUAL-VALUE SEQUENCING WITH AN
UNKNOWN PACKING CONSTRAINT

In this section we argue that the methods and results in
Sections 3, 4, and 5 can be obtained similarly for dual-value
sequencing with unknown packing constraint.

To obtain a PTAS, we again first approximate the lower
bound function Ȳ ∗ by a step function. Let t∗i be the largest
value such that Y ∗(ti) ≤ (1+ε)i. Using an FPTAS for knap-
sack, we can find in polynomial time values ti ∈ [t∗i−1, t

∗
i ].

We define Z∗(t) = (1+ε)i−1 for t ∈ [ti, ti+1). This step func-
tion lies below Ȳ ∗; more precisely, (1 − ε)2Ȳ ∗(t) ≤ Z(t) ≤
Ȳ ∗(t). Again, we combine a binary search for α∗(J) with
an approximate feasibility test for a given target function.
Such a test returns for a given function Z either a sequence π
with Ȳ π(t) ≥ (1 − ε) · Z(t), for all t, or it states that there
is no π∗ that satisfies Ȳ π(t) ≥ Z(t) for all t.

To adopt the method in Section 4 for obtaining the
approximate test for target function Z, we basically re-
place the minimization criterion by a maximization crite-
rion: Let FK(J ′, x′) denote now the maximum possible
total y-value in a fractional solution when packing items
from J ′ ⊆ {1, . . . , n} into an interval of length x′. This
maximum value is achieved by a greedy algorithm that packs
items in non-increasing order of ratios yj/xj for j ∈ J ′, with
perhaps the last item being packed fractionally. With a DP
we assign large and medium items to steps without splitting
them, and we fill the gaps by greedily packing small items
according to the maximized ratio yj/xj . This allows to argue
similarly to Lemma 1 that the DP must be infeasible if there
is no sequence π∗ such that Y π

∗
(t) ≥ Z(t) for all t. On the

other hand, if the DP is feasible, then there is a fractional
solution π̂ with Ȳ π̂ ≥ (1− ε) ·Z, with at most one new split
item per step and such item is not large in this step. Now,
we derive from π̂ a proper solution π by sequencing items
in order of their last occurrence in π̂. Similarly to the proof
of Lemma 3, we can show that this transformation from π̂
to π decreases the total y-value accumulated by time t by
at most ε · (1 + ε)i ≤ ε ·Z(t) for t in step i, i.e., t ∈ [ti, ti+1).

This gives the following result.

Theorem 5. There is an approximate feasibility test
for the dual-value sequencing problem with a given target
curve Z that either reports that there is no π∗ such that
Ȳ π
∗
(t) ≥ Z(t), for all t, or it outputs a permutation π such

that Ȳ π(t) ≥ (1− ε) · Z(t), for all t, for any given ε > 0 in
polynomial time.

In terms of approximation Theorem 5 is best possible since
testing exact feasibility is NP-hard.

Theorem 6. Given an instance of the dual-value se-
quencing problem with a given target curve T it is strongly
NP-hard to decide if there is a sequence π with Y (t)π ≥ T (t)
for all t. This is true even in the case of proportional values
and when the encoding length of the target function is linear
in the remaining input.

Proof. The proof is nearly identical to the proof of Theo-
rem 4. Given an instance of 3-partition in the same notation,
we construct the same dual-value sequencing instance and
define the slightly modified target function T (t) = A

⌊
t
A

⌋
.

Again, it is easy to see that there is a sequence π of all items
such that Y (t)π ≥ T (t), for any t ≥ 0, if and only if the 3-
partition instance admits a partition into triples adding up
to A.

We embed the test in the binary search framework. Ob-
serve that in the packing variant of dual-value sequencing,
there is no upper bound on the robustness factor for all in-
stances (as it was 4 in the covering variant). However, for
each instance J holds the upper bound α∗(J) ≤ y(J). And
this robustness factor is achieved by an arbitrary sequence.
Thus, we can run a standard binary search for α∗(J) ∈
[1, y(J)] such that in iteration i ∈ {1, 2, . . .} with αi we
run the approximate feasibility test with given accuracy pa-
rameter ε and target function Zi(t) = αi ∈ Z∗(t). Af-
ter k = dlog y(J)/εe iterations the length of the search inter-
val for α∗(J) has reduced to ε. Notice that k is polynomial
in the encoding length of instance J , and we can conclude
with the same argumentation as in the proof of Theorem 2.

Theorem 7. There is a PTAS that computes a (1 − ε) ·
α∗(J)-robust solution for dual-value sequencing with an un-
known packing constraint problem. Furthermore, the algo-
rithm computes a value α with (1− ε)α∗(J) ≤ α ≤ α∗(J).

Combined with Theorem 2 this concludes the proof of
Theorem 1.

7. CONCLUDING REMARKS
We leave as an open problem to determine the complexity

of finding an optimal-robust solution for an arbitrary in-
stance of the dual-value sequencing problem. We conjecture
that the problem is at least NP-hard—notice that it is not
even clear that the problem belongs to NP or co-NP.

Admittedly, our techniques are strongly tailored to the se-
quencing problem at hand. However, we feel that our idea
of approximating an (unknown) instance-sensitive guaran-
tee does have greater applicability. We hope that our work
inspires others to revisit optimization problems where an ab-
solute approximation or competitive ratio has been found to
be tight for a certain subclass of instances. For such prob-
lems, it may still be possible to improve upon these absolute
guarantees by focusing on instances-sensitive guarantees.
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